Investigating the Use of Digital Surface Models to Assess Vegetation Succession to Inform Conservation and Recovery of Eastern Massasaugas



Prepared By:

- Yu Man Lee, Michigan Natural Features Inventory, Michigan State University Extension, PO Box 13036, Lansing, MI 48901-3036
- Dorthea Vander Bilt and Laura Bourgeau-Chavez, Michigan Tech Research Institute, 3600 Green Ct STE 100, Ann Arbor, MI 48105

# Prepared For:

Michigan Department of Natural Resources, Wildlife Division, Constitution Hall, 4<sup>th</sup> Floor, P.O. Box 30444, Lansing, MI 48909-7944

October 26, 2023

MNFI Report Number 2023-29



This version of the report should not be distributed publicly. It contains fine-scale location information for a federally and state listed species that could be used to poach or disturb the species. A redacted version is available for public distribution on MNFI website: https://mnfi.anr.msu.edu/publications/reports.

## Suggested Citation:

Lee, Y., D. Vander Bilt, and L. Bourgeau-Chavez. 2023. Investigating the Use of Digital Surface Models to Assess Vegetation Succession to Inform Conservation and Recovery of Eastern Massasaugas. Michigan Natural Features Inventory, Report No. 2023-29, Lansing, MI.

Copyright 2023 Michigan State University Board of Trustees.

MSU Extension programs and materials are open to all without regard to race, color, national origin, gender, gender identity, religion, age, height, weight, disability, political beliefs, sexual orientation, marital status, family status, or veteran status.

We collectively acknowledge that Michigan State University occupies the ancestral, traditional, and contemporary Lands of the Anishinaabeg – Three Fires Confederacy of Ojibwe, Odawa, and Potawatomi peoples. In particular, the University resides on Land ceded in the 1819 Treaty of Saginaw. We recognize, support, and advocate for the sovereignty of Michigan's twelve federally recognized Indian nations, for historic Indigenous communities in Michigan, for Indigenous individuals and communities who live here now, and for those who were forcibly removed from their Homelands. By offering this Land Acknowledgement, we affirm Indigenous sovereignty and will work to hold Michigan State University more accountable to the needs of American Indian and Indigenous peoples.

Cover: Eastern Massasauga (*Sistrurus catenatus*) Habitat with Shrub Encroachment, Waterloo State Recreation Area. Photo by Yu Man Lee. Eastern Massasauga. Photo by Joseph Sage.

#### **EXECUTIVE SUMMARY**

Conservation of eastern massasauga rattlesnakes (Sistrurus catenatus, Federal and State Threatened) in Michigan is critical to the recovery of the species rangewide. Recovery of the eastern massasauga will require sustaining multiple, robust populations with stable or increasing demographic rates and sufficient quantities of high-quality habitat distributed across Michigan over the long term. Eastern massasaugas utilize early successional wetland and upland habitats with open or sparse canopy areas intermixed with shaded areas for thermoregulation, foraging, gestation/parturition, and retreat from predators (Sage 2005, Lipps 2008, Szymanski et al. 2016). Vegetative succession, typically through encroachment of woody vegetation and the introduction of nonnative or invasive species, has contributed significantly to habitat loss and degradation in many massasauga populations (Reinert and Buskar 1992, Johnson and Breisch 1993). Assessing the risk or degree of vegetative succession or canopy closure (i.e., through increase in shrubs, trees, and/or nonnative or invasive species) within and across massasauga populations can help target, prioritize, and evaluate habitat management to sustain these populations and help recover the species. However, the number and extent of massasauga populations in Michigan and limited resources to date have made it challenging to assess and determine the current status, potential viability, and threats, including vegetative succession, facing individual populations in the state. Additionally, current methods for assessing vegetative succession, which include aerial imagery interpretation, comparison of temporal land cover data, and field assessments, can be time- and resource-intensive, particularly if assessing large areas or multiple sites, and results may not be at a fine enough resolution to target management. As a result, habitat management or restoration may not occur where needed or may not be as strategic or as effective as they could be given limited information to help target, prioritize, and evaluate management.

This pilot project investigated the use of digital surface models (DSMs) in combination with other remote sensing imagery, land cover data, and geoprocessing to model and assess canopy cover (i.e., shrub and tree cover) within eastern massasauga populations to identify areas that may be undergoing vegetative succession and could benefit from management to enhance habitat for massasaugas. This project focused on nine priority or focal massasauga populations in two primary study regions, the Shiawassee River Headwaters region in southeast Michigan and Barry County in southwest Michigan. To conduct this project, Michigan Natural Features Inventory (MNFI) enlisted the expertise and assistance of Michigan Tech Research Institute (MTRI). Michigan Tech Research Institute compiled and used a time series of available highresolution optical and DSM imagery, an existing wetland type map, and eastern massasauga element occurrences (EOs), field locations, and habitat condition data from MNFI to model and evaluate changes in shrub and tree cover, vegetation height, and canopy closure across critical habitat within the focal populations. A total of 31 available multispectral Worldview (DigitalGlobe/MAXAR) scenes and 16 total available stereopair-derived digital surface models (DSMs) were compiled for the two study regions combined. Additional layers were derived from the multispectral and DSM data to supplement the data stacks, including the normalized difference vegetation index (NDVI) and topographic position index (TPI). Data stacks and training data were read into the machine learning algorithm Random Forest (Breiman 2001) to

generate output pixel-based classifications which were reclassified to include only woody canopy classes of forest and shrub. For two priority massasauga sites and all massasauga EOs within the focal populations in the two study regions, we calculated the estimated area (total acres per class) and percentage (area target class/total area within the population or unit within a population) of shrub, forest, and combined shrub and forest canopy cover. We also conducted a neighborhood assessment in one study region in which the percent canopy cover within a 10 m x10 m (5 x 5 pixel area) neighborhood window around each pixel was calculated. To better understand where changes in shrub, forest and total canopy were occurring, final canopy maps from different dates with overlapping footprints were intersected to create canopy cover change maps for focal populations within the two study regions. We compared canopy acreages and percentages over time, where available, in order to understand general succession and shrubification patterns throughout the focal populations. We also compared available DSM data within intersecting footprints between different time periods to assess canopy height changes. To validate the model results, we collected data on shrub and forest cover in the field within two priority sites. We also evaluated the model results using high resolution NAIP aerial imagery and information from the land managers of the two sites.

Canopy cover and canopy change maps indicating areas with and changes in shrub and/or forest cover were generated for available time periods for focal populations within the two study regions. Areas that were estimated as having 50% or greater canopy cover were flagged for potential management. Percent cover estimates of shrub and/or forest cover ranged from <1% to 56% within two priority massasauga sites that have been actively managed to maintain open habitat conditions. Canopy cover was less than 50% across all the units and available time periods within these two priority sites except for two instances. Percent cover estimates of shrub and/or forest cover within massasauga EOs in the focal populations ranged from 0% to 98% but were generally below 50% except in a small number of locations. The neighborhood assessment identified specific local areas within sites with greater than 50% shrub and/or forest cover even though estimated canopy cover was less than 50% across an entire unit or site. After integrating the field data collected from canopy change areas with the NAIP validation data on unchanged areas across two sites, the overall accuracy was 85% when canopy classes were combined and 68% when forest and shrub were assessed separately. Comparing available DSM data within intersecting footprints between different time periods to assess canopy height changes had mixed results. Upon further investigation, this analysis was not possible since the DSMs were not normalized between scenes. Accuracy of the canopy change assessments was variable based on information from the land managers of the two sites.

Results from this pilot approach demonstrate that using high resolution Worldview 8 band imagery and corresponding DSMs can provide a useful resource for monitoring presence and change in extent of forest and shrub canopy for eastern massasauga habitat. Additional work is needed though to further evaluate and increase the accuracy and effectiveness of this approach. This includes securing additional and current DSMs and Worldview imagery, normalizing DSMs, and conducting field validation in additional areas. This approach could be used to target and prioritize habitat management efforts to sustain eastern massasauga populations in Michigan and better determine and secure resources needed to accomplish this.

## ACKNOWLEDGEMENTS

Funding for this project was provided by the Michigan Department of Natural Resources (MDNR), Wildlife Division. The following MNFI seasonal field technicians assisted with the field validation sampling: Justin Florkowski and Morgan Boyer. Administrative support was provided by Ashley Adkins, Brian Klatt, Sarah Carter, and Deb Richardson. We would like to thank Jennifer Kleitch with the MDNR Wildlife Division for her assistance and communications throughout this project. We also would like to thank the following MNFI staff and partners for providing information and consultation for this project: Dr. Jennifer Moore, Grand Valley State University; Helen Enander, MNFI GIS Analyst; Mike Losey, Springfield Township; and Andrew Bacon, Michigan Nature Association.

## TABLE OF CONTENTS

| EXECUTIVE SUMMARYi                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACKNOWLEDGEMENTS iii                                                                                                                                       |
| TABLE OF CONTENTS iv                                                                                                                                       |
| LIST OF TABLES vi                                                                                                                                          |
| LIST OF FIGURES vii                                                                                                                                        |
| INTRODUCTION                                                                                                                                               |
| METHODS                                                                                                                                                    |
| Project Objective4                                                                                                                                         |
| Study Area4                                                                                                                                                |
| Data Compilation6                                                                                                                                          |
| Canopy Cover Modeling and Assessment9                                                                                                                      |
| Field Validation14                                                                                                                                         |
| RESULTS                                                                                                                                                    |
| Canopy Cover Modeling and Assessment16                                                                                                                     |
| Field Validation31                                                                                                                                         |
| Online Web Application34                                                                                                                                   |
| DISCUSSION                                                                                                                                                 |
| LITERATURE CITED                                                                                                                                           |
| APPENDIX A: Canopy maps for the Shiawassee River Headwaters study region from 2012, 2017, 2022, and 2023                                                   |
| APPENDIX B: Canopy maps for the <b>Constant Sector</b> site within the Shiawassee River<br>Headwaters study region from 2011, 2012, 2017, 2022, and 2023   |
| APPENDIX C: Canopy maps for the site within the Shiawassee River Headwaters study region from 2012, 2017, and 2022                                         |
| APPENDIX D: Canopy maps for the Barry County study region from 2011, 2014, and 201743                                                                      |
| APPENDIX E: Canopy maps for the second site within the Barry County study region from 2014                                                                 |
| APPENDIX F: Canopy cover estimates in area/acres for units within the site in the Shiawassee River Headwaters study region from 2011-2023                  |
| APPENDIX G: Canopy cover estimates in percent cover for units within the site in the Shiawassee River Headwaters study region from 2011-2023               |
| APPENDIX H: Canopy cover estimates (area and percent cover) for eastern massasauga (EMR) element occurrences (EOs) in the Shiawassee study region for 2011 |

| APPENDIX I: Canopy cover estimates (area and percent cover) for eastern massasauga (EMR) element occurrences (EOs) in the Shiawassee study region for 2012  | )<br>53  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| APPENDIX J: Canopy cover estimates (area and percent cover) for eastern massasauga (EMR element occurrences (EOs) in the Shiawassee study region for 2017   | )<br>56  |
| APPENDIX K: Canopy cover estimates (area and percent cover) for eastern massasauga (EMR element occurrences (EOs) in the Shiawassee study region for 2022   | :)<br>59 |
| APPENDIX L: Canopy cover estimates (area and percent cover) for eastern massasauga (EMR element occurrences (EOs) in the Shiawassee study region for 2023   | )<br>62  |
| APPENDIX M: Canopy cover estimates (area and percent cover) for eastern massasauga (EM element occurrences (EOs) in the Barry County study region for 2011  | R)<br>65 |
| APPENDIX N: Canopy cover estimates (area and percent cover) for eastern massasauga (EMF element occurrences (EOs) in the Barry County study region for 2014 | ≀)<br>67 |
| APPENDIX O: Canopy cover estimates (area and percent cover) for eastern massasauga (EMF element occurrences (EOs) in the Barry County study region for 2017 | ≀)<br>69 |

## LIST OF TABLES

| Table 1. Data stacks were prepared by overlapping geographic region   date.                                                                                           | and image collection7                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Table 2. Subset of shrub and forest canopy cover assessment results b   unit for 2017, 2022, and 2023 within the   in the Shiawassee study region                     | by percentage for each<br>ite within the <b>1997</b><br>19 |
| Table 3. Shrub and forest cover assessment results by area/acreage and unit for 2012, 2017, and 2022 within the shiawassee study region                               | nd percentage within each<br>in<br>20                      |
| Table 4. Subset of forest and shrub cover assessment results for 2023 (EMR) element occurrences (EOs) located within focal populations in the Headwaters study region | for eastern massasauga<br>the Shiawassee River<br>21       |
| Table 5. Error matrices for the non-edge forest and shrub regions with sites in the Shiawassee Basin Populatio                                                        | hin the<br>on (SBP) using NAIP                             |
| imagery to assess accuracy of the canopy cover model results                                                                                                          |                                                            |
| Table 6. Accuracy for the 2023                                                                                                                                        | canopy model results32                                     |

## LIST OF FIGURES

| Figure 1. Diagrams illustrating concept of a digital surface model (DSM) compared to a digital terrain model (DTM) or digital elevation model (DEM)                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 2. Map of the eastern massasauga element occurrences (EOs) in the Michigan Natural Heritage Database, focal populations, and specific sites within three focal populations in the Shiawassee River Headwaters and Barry County regions that were included in the modelling and/or field validation components of this project                                                                                                                                                        |
| Figure 3. Data stack for each map classification included eight bands of multispectral worldview, the normalized difference vegetation index (NDVI), and two topographic position index (TPI) layers derived from the digital surface model (DSM)                                                                                                                                                                                                                                           |
| Figure 4. Sample data were drawn for representative classes within the image stack. Output classifications were created with Random Forest and the non-woody (shrub or forest) classes were removed. Training data are represented by red and yellow polygons. Blue circles represent MNFI locations of eastern massasauga element occurrences. Output classifications (center) were assigned random colors until canopy symbology (shrub = light green, forest = dark green) was assigned. |
| Figure 5. Example of the generated land cover mask excluding non-massasauga habitat from the canopy assessments within eastern massasauga element occurrences (EOs) in the focal study populations                                                                                                                                                                                                                                                                                          |
| Figure 6. Example of the neighborhood assessment of canopy cover within a 10 m x10 m plot around each given pixel for class types: A) shrub, B) forest, and C) total canopy compared to D) base imagery                                                                                                                                                                                                                                                                                     |
| Figure 7. Example of canopy change between 2023 and 2022 within a priority site within the                                                                                                                                                                                                                                                                                                                                                                                                  |
| Figure 8. Canopy cover map for focal populations within the Shiawassee River Headwaters study region                                                                                                                                                                                                                                                                                                                                                                                        |
| Figure 9. Canopy cover map for focal populations within the Barry County study region18                                                                                                                                                                                                                                                                                                                                                                                                     |
| Figure 10. General shrubification trends were estimated for the priority areas through the quantification of total canopy and forest and shrub area (acres) as well as canopy percentage based on the extent of the priority areas                                                                                                                                                                                                                                                          |
| Figure 11. Base imagery (A) and results of neighborhood assessment of canopy within a 10 m x 10 m plot around each pixel for total canopy/shrub and forest cover combined (B) and shrub (C)                                                                                                                                                                                                                                                                                                 |

and forest (D) canopy cover separately within the eastern half of an eastern massasauga

| priority site within the | in the Shiawassee River Headwaters |
|--------------------------|------------------------------------|
| study region             | <br>                               |

Figure 12. Base imagery (A) and results of neighborhood assessment of canopy within a 10 m x 10 m plot around each pixel for total canopy/shrub and forest cover combined (B) and shrub (C) and forest (D) canopy cover separately within the western half of an eastern massasauga priority site within the second se

Figure 14. Composite canopy change map for eastern massasauga focal populations and element occurrences within the Barry County study region between 2011, 2014, and/or 2017.

Figure 16. Canopy change maps for four time periods between 2011 and 2023 for the western half of an eastern massasauga priority site, the second sec

| Figure 17. Canopy change maps for two time periods | s between 2012 and 2022 for an eastern |
|----------------------------------------------------|----------------------------------------|
| massasauga priority site,                          | , located within the                   |
| in the Shiawassee River Headwaters study reg       | ion29                                  |

Figure 18. Example of shrubification throughout time captured by the difference in DSMs. ..... 30

#### INTRODUCTION

Conservation of eastern massasauga rattlesnakes (Sistrurus catenatus, Federal and State Threatened) in Michigan is critical to the recovery of the species rangewide. The U.S. Fish and Wildlife Service listed the eastern massasauga rattlesnake (EMR) as threatened under the federal Endangered Species Act in 2016 (U.S. Fish and Wildlife Service [USFWS] 2016). As of 2016, the number of presumed extant populations of eastern massasaugas rangewide (n=347) had declined by 38% from the number that was known historically, and the species' extent of occurrence had declined by 41%, particularly in the southern and western parts of its range (Szymanski et al. 2016, U.S. Fish and Wildlife Service [USFWS] USFWS 2016). Of the 347 presumed extant populations of eastern massasaugas rangewide in 2016, 139 (40%) were presumed to be quasi-extirpated (i.e., have 25 or fewer adult females), and only 105 (30%) were presumed to be demographically, genetically, and physiologically robust with only 19 (0.5%) presumed to be self-sustaining (Szymanski et al. 2016, USFWS 2016). The recovery vision for eastern massasaugas is that healthy populations are conserved in sufficient number and distribution to ensure the species' long-term viability (USWFS 2021). The strategy for achieving this vision includes identifying, managing, and conserving 135 robust populations among three conservation units (87 in the Central Unit which includes Michigan, Indiana and Ohio) and adequate quantity and configuration of high-quality summer and winter habitats to support these populations (USFWS 2021). Although the eastern massasauga is currently listed as State Threatened and has been identified as a Species of Greatest Conservation Need (SGCN) in Michigan's Wildlife Action Plan (Derosier et al. 2015), Michigan is considered to be the last stronghold for the species with more extant or presumed extant populations than any other state or province (205 [59%] of the 347 presumed extant populations rangewide in 2016, Szymanski et al. 2016). Additionally, a climate change vulnerability assessment for the eastern massasauga utilizing spatially explicit demographic models and climate and land cover variables predicted more populations with high probability of persistence in the northeastern part of the species' range, particularly in northern Michigan and Ontario, than in other parts of its range (Pomara et al. 2014). Recovery of the eastern massasauga rangewide will require sustaining multiple, robust, and resilient populations distributed across Michigan over the long term.

To sustain eastern massasauga populations over the long term, they require appropriate demographic rates and a sufficient quantity of high quality or suitable habitat. During the active season, massasaugas utilize wetland and/or upland habitats with early successional and open or sparse canopy areas intermixed with shaded areas for thermoregulation, foraging, gestation/parturition, and/or retreat from predators (Sage 2005, Lipps 2008, Szymanski et al. 2016). Suitable massasauga habitats in Michigan and across the species' range include bogs, fens (Kingsbury et al. 2003, Marshall et al. 2006), wet meadows, wet prairies, moist grasslands, marshes, shrub swamps (Wright 1941, Seigel 1986, Sage 2005), floodplain forests (Moore and Gillingham 2006), coniferous forests (Harvey and Weatherhead 2006), scrub-shrub forests, forest edges (DeGregorio et al. 2011), old fields (Reinert and Kodrich 1982), barrens, and savannas. In addition to active season habitat, suitable overwintering habitat also must be available and hydrological and ecological processes that create and maintain suitable habitat must be intact to maintain populations over time (Szymanski et al. 2016).

The primary threats to long-term viability of eastern massasauga populations in Michigan and across the species' range include habitat loss, degradation, and fragmentation, especially through development and vegetative succession (Szymanski et al. 2016, USFWS 2016). Road mortality, hydrological alterations resulting in drought or flooding, persecution, collection, mortality due to habitat management, and disease also have contributed to the species decline (Szymanski et al. 2016, USFWS 2016). Vegetative succession, typically through encroachment of woody vegetation and the introduction of nonnative or invasive species (e.g., glossy buckthorn, Frangula alnus), has contributed significantly to habitat loss and degradation in many (i.e., 81%, Szymanski et al. 2016) extant massasauga populations (Reinert and Buskar 1992, Johnson and Breisch 1993). Reducing open canopy areas and altering habitat structure and quality can decrease and eventually eliminate thermoregulatory and retreat areas for massasaugas, reduce the prey base, and adversely impact massasauga populations (Kingsbury 2002, Szymanski et al. 2016, USFWS 2016). Recent results from occupancy modelling found canopy cover (i.e., of shrubs and trees) to be the most important factor for determining habitats that support massasaugas (Thacker 2020, Thacker et al. 2023). Models showed that the probability of massasauga occupancy effectively dropped to zero as canopy cover approached 50-60% coverage (Thacker 2020, Thacker et al. 2023). These results illustrate the importance of maintaining open canopy habitat for sustaining viable eastern massasauga populations.

Assessing the risk or degree of vegetative succession or canopy closure (i.e., through increase in shrubs, trees, and/or nonnative or invasive species) within and across massasauga populations can help target, prioritize, and evaluate habitat management to sustain these populations and help recover the species. However, the abundance of populations and habitat for this species in Michigan and limited resources to date have made it challenging to ascertain the status, potential viability, and type and level of threats, including vegetative succession or canopy closure, facing individual populations in the state. Additionally, current methods for assessing vegetative succession/canopy cover include aerial imagery interpretation, comparison of temporal land cover data, and field assessments which can be time- and resource-intensive, particularly if assessing large areas or multiple sites, and results may not be at a fine enough resolution to target management. As a result, habitat management or restoration may not occur where needed or may not be as strategic or as effective as they could be given limited information to help target, prioritize, and evaluate management.

This pilot project investigated the use of digital surface models (DSMs) in combination with other remote sensing imagery, land cover data, and geoprocessing to model and assess canopy cover (i.e., shrub and tree cover) at sites within massasauga populations to identify areas that could benefit from habitat management to enhance habitat for massasaugas. A digital surface model is an elevation model that represents the topography of the Earth's surface and captures and maps both the natural and built/artificial features on it, including buildings, trees, powerlines, and other objects (Figure 1). A digital surface model can be viewed as a canopy model as it only maps the tops of all above ground features where there is nothing else above it (Marwaha and Duffy 2021). Digital surface models are generated by applying fully automated, stereo auto-correlation techniques to overlapping pairs of high-resolution optical satellite images using the open-source Surface Extraction from TIN-based Searchspace Minimization

(SETSM) software, developed by M.J. Noh and Ian Howat at the Ohio State University. Digital surface models and other data from different time periods, if available, could be used to model, assess, and monitor change in vegetation conditions over time. This approach, if effective, could provide an accurate, high resolution, and more efficient process for assessing canopy cover/vegetative succession within massasauga populations across Michigan and potentially rangewide.



Figure 1. Diagrams illustrating concept of a digital surface model (DSM) compared to a digital terrain model (DTM) or digital elevation model (DEM).

(Top diagram by Yodin based on file: DTM DSM.png by User: MartinOver., CC BY-SA 4.0, Wikipedia, <u>https://commons.wikimedia.org/w/index.php?curid=44279694</u>. Bottom diagram by Anindya Naskar 2021, 3D Digital Surface Model with Python and Pylidar, <u>https://thinkinfi.com/3d-digital-surface-model-with-python-and-pylidar/</u>)

## METHODS

## **Project Objective**

This project addressed the following objective:

 Investigate the use of digital surface models (DSMs) and other available remote sensing data and geoprocessing tools to develop a model and GIS (Geographic Information System) layer showing amount of canopy cover/vegetation succession in occupied and adjacent habitats within two focal eastern massasauga populations in Michigan.

## **Study Area**

This project focused on nine priority or focal eastern massasauga populations in two primary study regions in southern Michigan which included six focal populations in the Shiawassee River Headwaters region in northwest Oakland County and three focal populations in Barry County (Figure 2). These populations were identified and delineated in 2015 based on a population model using known massasauga element occurrences (EOs) in Michigan's Natural Heritage Database (NHD) and a cost-weighted distance analysis (Lee and Enander 2015). An element occurrence is an area of land or water where an element of biodiversity (in this case, an eastern massasauga) currently or historically occurred. Each EO may be comprised of multiple observations of a species (or natural community) through space or time. The delineated massasauga populations often included multiple EOs and sites. Delineated massasauga populations for management to sustain the species in perpetuity in the state (Lee 2017). Multi-year, intensive population monitoring has been occurring at specific sites within three of the focal populations included in this study, two in the Shiawassee study region

and one in the Barry study

region (Figure 2). Eastern massasauga presence surveys have been conducted at additional sites within these populations (Figure 2).



Figure 2. Map of the eastern massasauga element occurrences (EOs) in the Michigan Natural Heritage Database (blue) (MNFI 2023), focal populations (pink), and specific sites (i.e.,

within three

focal populations in the Shiawassee River Headwaters and Barry County regions that were included in the modelling and/or field validation components of this project.

#### **Data Compilation**

To conduct this project, Michigan Natural Features Inventory (MNFI) enlisted the expertise and assistance of Michigan Tech Research Institute (MTRI). MTRI has extensive experience using remote sensing to model habitat conditions to inform and guide natural resource management including the use of DSMs (see this StoryMap for more information). Michigan Tech Research Institute has access to DSMs for areas within Michigan, which are currently only available to federal agencies. In order to assess habitat conditions for eastern massasauga rattlesnakes (EMRs) geospatially, MTRI compiled and used a time series of high-resolution optical and DSM imagery, their existing wetland type map for the state of Michigan, and eastern massasauga element occurrences (EOs), field locations, and habitat condition data from MNFI to evaluate changes in shrub and tree cover, vegetation height, and canopy closure across critical habitat within the focal populations. Quantifying shrub cover provided insights into habitat conditions as increased shrubification and canopy closure are known indicators of massasauga habitat degradation. Shrub cover was assessed through traditional landcover classification extents and percent cover estimates. Prior to data compilation and modelling shrub and tree canopy cover, MNFI and MTRI staff met with Dr. Jennifer Moore from Grand Valley State University, a project partner, to discuss and provide information on eastern massasauga ecology and habitat needs, including the impact of canopy cover on massasaugas, to help inform modelling efforts.

Michigan Tech Research Institute compiled a total of 31 available multispectral Worldview (DigitalGlobe/MAXAR) scenes and 16 total available stereopair-derived digital surface models (DSMs) (Klassen et al. 2021) for the two study regions combined. These included 22 total available multispectral Worldview scenes that covered the Shiawassee River Headwaters study region ranging from April 2006 to August 2023, and 9 stereopair-derived digital surface models (DSMs) (Klassen et al. 2021) ranging from March 2010 to August 2017. The Barry County study region had nine available multispectral Worldview scenes ranging from August 2009 to May 2020 and seven DSMs from August 2008 and 2017. We aggregated overlapping extents of multispectral and DSM data for mapping by date, resulting in six data stacks for classification (Table 1). In the Shiawassee study region, we included multispectral images from June 19, 2022 and June 1, 2023 for mapping despite the lack of available DSM data for this time period so that canopy cover maps could be compared to current conditions and management in the field for model validation (Table 1). Without the DSM, we expected higher confusion between forest and shrub canopy for the maps generated from the 2022 and 2023 multispectral images.

Table 1. Data stacks were prepared by overlapping geographic region and image collection date.

| Study<br>Region | Multispectral<br>Worldview Date | Digital Surface Model<br>(DSM) Date            | Notes                                                                                    |
|-----------------|---------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------|
| Shiawassee      | June 1, 2023                    | NA                                             | Partial coverage from multispectral. No DSM available.                                   |
| Shiawassee      | June 19, 2022                   | NA                                             | Partial coverage from multispectral. No DSM available.                                   |
| Shiawassee      | June 2, 2016                    | June 12, 2017 (west)<br>August 27, 2014 (east) | Multiple DSM dates were used as individual DSM layers did not cover full extent.         |
| Shiawassee      | June 27, 2012                   | May 19, 2012                                   | Partial coverage from available DSM.<br>Rest of area classified with only multispectral. |
| Shiawassee      | May 22, 2011                    | March 16, 2010                                 | Partial extent for both multispectral and DSM.                                           |
| Barry           | September 24, 2017              | September 24, 2017                             |                                                                                          |
| Barry           | June 27, 2012                   | May 19, 2012                                   | Partial coverage from available DSM.<br>Rest of area classified with only multispectral. |
| Barry           | October 5, 2011                 | August 26, 2008                                | Partial scenes on far east and far west. No data available in the central region.        |

Additional layers were derived from the multispectral and DSM data to supplement the stacks (Figure 3). For each multispectral image, we calculated the normalized difference vegetation index (NDVI). This index quantifies vegetation health and density by measuring the difference between near-infrared (which vegetation strongly reflects) and red light (which vegetation absorbs). NDVI values range from -1.0 to 1.0, with negative values indicating clouds and water, positive values near zero indicating no vegetation or bare soil, and higher positive values indicating sparse or unhealthy to dense, healthy vegetation as values approach 1. For each DSM, we also generated the topographic position index (TPI) (Weiss 2001), which relates each pixel's elevation to the neighboring cells of a set window size, at the 100 m and 500 m scale. These TPI layers differentiate shrub and tree height differences from surrounding ecotypes while minimizing the variation of DSM absolute heights across the scene.



Figure 3. Data stack for each map classification included eight bands of multispectral worldview, the normalized difference vegetation index (NDVI), and two topographic position index (TPI) layers derived from the digital surface model (DSM).

#### **Canopy Cover Modeling and Assessment**

#### Canopy Mapping

Training data polygons were generated for each of the final data stacks from image interpretation of the high-resolution data. Non-shrub and non-forest landcover classes, such as developed, agriculture, water, and emergent wetland, were included as necessary to assist the decision-making process of the classifier. Data stacks and training data were read into the machine learning algorithm Random Forest (Breiman 2001) to generate output pixel-based classifications and classification confidence layers. The confidence data represents the percentage of votes the classifier put toward each class, with the highest ranked class assigned to the pixel (note this may have been less than 50% for a given pixel). Output classifications were reclassified to include only woody canopy classes of forest and shrub (Figure 4).

We compared forest and shrub class extents to image stacks and assigned threshold masks where appropriate from the confidence layer (e.g., for the Barry 2011 classification, only pixels with  $\geq$  60% confidence were kept in the final classification). In the Shiawassee study region, we made additional manual edits within specified regions of prioritized eastern massasauga habitat (i.e., within **additional**, and EO regions) (Figure 2).



Figure 4. Sample data were drawn for representative classes within the image stack. Output classifications were created with Random Forest and the non-woody (shrub or forest) classes were removed. Training data are represented by red and yellow polygons. Blue circles represent MNFI locations of eastern massasauga element occurrences. Output classifications (center) were assigned random colors until canopy symbology (shrub = light green, forest = dark green) was assigned.

## Land Cover Analysis

We used a highly accurate wetland type map previously generated by MTRI for Michigan using multi-temporal, multi-sensor data (<u>https://geodjango.mtri.org/coastal-wetlands/</u>) to identify fens and other emergent wetlands within the study populations. This circa 2010 map was generated using multispectral Landsat and synthetic aperture radar (SAR) PALSAR data at a 12.5 m pixel resolution and 0.2 ha minimum mapping unit and had a total accuracy of 81%. Twenty-four distinct landcover classes are included in this classification, of which 11 classes are wetland types. Eastern massasaugas are typically found within fen and emergent wetland types, particularly in southern Michigan. Therefore, these class extents from the landcover map were compared with the canopy maps generated from the 2-m resolution Worldview data to focus the canopy cover assessment within these wetland classes.

In heterogeneous wetland areas, particularly where the separate type patches were smaller than 12.5 m x 12.5 m, only assessing fen and emergent wetland classes excluded large areas of desirable massasauga habitat. This was particularly evident within the Since the boundaries of these focal populations already did a good job of delineating potential massasauga habitat from non-habitat, we used the boundaries of these populations to assess and estimate area and percentage of canopy cover (i.e., shrub and tree cover) instead of using the land cover maps.

The eastern massasauga element occurrences (EOs) within the focal populations outside of however, included both potential habitat and non-habitat land cover classes such as agriculture, development, water, and upland forests. The landscape or land cover maps for these EOs were very helpful in removing non-target areas from the canopy cover analysis. We reclassified non-target land cover classes (e.g., urban, suburban, urban grass, urban road, agriculture, upland forest, pine plantation, barren light, and forested wetland) within these EOs into a non-habitat land cover mask (Figure 5). We excluded these masked out areas from the analysis and all canopy area and percentage estimates within the EO boundaries.



Figure 5. Example of the generated land cover mask excluding non-massasauga habitat from the canopy assessments within eastern massasauga element occurrences (EOs) in the focal study populations.

## Canopy Cover

We assessed the final canopy (i.e., of forest and shrub classes) maps for each focal population and available time period for total canopy cover. In general, eastern massasauga rattlesnakes prefer wetland areas with less than 50-60% total canopy cover (Thacker 2020). For each focal population or units within a population, we calculated the estimated area (total acres per class) and percentage (area target class/total area within the population or unit within a population) of shrub, forest, and combined shrub and forest canopy cover. Areas that were estimated as having 50% or greater canopy cover were flagged for potential management. Land cover masks, as described above, were utilized to remove areas of non-massasauga habitat within the massasauga EO data extents from canopy cover estimations. These masks were not applied for the target populations as those boundaries primarily only captured possible massasauga habitat.

In addition to the total percentage canopy for each population extent, we conducted a neighborhood assessment for a portion of the Shiawassee River Headwaters study region. For each pixel, the percent canopy within a 10 m x10 m (5x5 pixel area) neighborhood window around it was calculated. This analysis allows managers to assess canopy density at a more local scale from any given point within a population. These neighborhood values were calculated for shrubs, forest, and combined total canopy (Figure 6).



Figure 6. Example of the neighborhood assessment of canopy cover within a 10 m x10 m plot around each given pixel for class types: A) shrub, B) forest, and C) total canopy compared to D) base imagery. Areas with darker shades of the color indicate higher percent cover of the respective class type.

## Canopy Change

To better understand where the changes in shrub, forest and total canopy were occurring, final canopy maps from different dates with overlapping footprints were intersected to create canopy cover change maps for focal populations within each of the two study regions (Figure 7). We compared canopy areas and percentages over time where available in order to understand general succession and shrubification patterns throughout the focal populations, particularly in the **Section 20** populations and stable canopy areas within the focal study populations. Areas with increasing canopy/shrub trends were noted for potential management.

Final outputs were reclassified as follows:

Forest = Classified as forest in both time periods.

Shrub = Classified as shrub in both time periods.

Forest Gain = Classified as forest in the newer map but not in the older map.

Shrub Gain = Classified as shrub in the newer map but not in the older map.

Forest Loss = Classified as forest in the older map but not in the newer map.

Shrub Loss = Classified as shrub in the older map but not in the newer map.

Forest/Shrub Mix = Classified as forest in the older map and as shrub in newer or vice versa.

## Canopy Height Change

In addition to being used in the canopy classifications, we compared available DSM data within intersecting footprints between different time periods to assess canopy height changes. We focused this analysis on two priority sites within the

populations. We calculated average, minimum, and maximum change trends for each of the seven canopy change classes within the **seven canopy**. We expected that, in general, woody vegetation classes would grow taller both throughout one season and across multiple years.



Figure 7. Example of canopy change between 2023 and 2022 within a priority site within the The polygons outlined in orange indicate areas with open wetland or upland habitats that represent suitable massasauga habitat. Field validation sampling points are represented in pink. Note that for 2022 and 2023, digital surface model data were not available to include in the canopy classifications.

## **Field Validation**

## Canopy Cover

To validate the model output/results, we collected data in the field on shrub and tree cover at randomly selected points within two sites

associated with the in the Shiawassee River Headwaters study region (Figure 2). We focused the field validation sampling on this population because we had canopy cover model results from 2022 and 2023 for this population that could be compared with current canopy conditions in the field. The canopy model results for focal populations in the Barry County study region were based on imagery from 2014 or 2017 (latest years for available DSM and Worldview imagery for the area around these focal populations). We decided that field data collected in 2023 might not correlate well with model results based on DSM and imagery from 2017, and as a result, we did not conduct field testing of the model results for focal populations within the Barry County study region. Additionally, we have been conducting massasauga surveys within the and had access to sample sites within this population. The site within the **set is one of the target study** populations where we reviewed the canopy maps and made additional manual edits to the maps, and thus map accuracy was expected to be higher. While the site is within the focal population, we did not make additional post-processing edits to the canopy map for this site and so this site was more representative of the rest of the non-target mapped areas within the SBP and other focal populations. Since most of the map dates for the SBP were more than 6 – 15 years ago, only the 2022 and 2023 canopy maps were viable for field validation. It is again of note that these maps did not have available DSM data to supplement the models, thus increasing uncertainty between shrub and forest classes.

We developed a sampling protocol for estimating canopy (shrub and tree) cover in the field that would help evaluate the model outputs. We also strived to develop a method that would be accurate and practical for other researchers and land managers to potentially implement in the field at their respective sites. To validate the 2022-2023 canopy cover maps, we randomly selected 80 total field sampling points within each of the two field validation sites within the SBP. We randomly selected 20 field validation points in each of four classes from the 2023-2022 canopy change map (i.e., shrub gain, shrub loss, forest gain, forest loss) (Figure 7). Eleven of the randomly selected sampling points in the **SER** site were inaccessible to the field team. These points were replaced with eleven new points selected by the field team at locations with potential inconsistencies between the 2023 canopy model and the actual vegetation cover in the field. We sampled 80 points at one site (**SER**)

) and 61 points at the second site (**Construction**), for a total of 141 field validation points. We overlaid a 2 m x 2 m plot and a 10 m x 10 m plot around each field validation point. Within the 2 m x 2 m plot around each field validation point, we visually estimated percent canopy cover of shrubs and trees separately and estimated the canopy cover of shrubs and trees combined at 30 cm and 120 cm above the ground using a spherical densiometer. The spherical densiometer consisted of either a concave or a convex mirror with twenty-four 0.6 cm x 0.6 cm (1/4 in x 1/4 in) squares engraved on the surface. We counted the total number of squares on the densiometer with canopy openings (i.e., no canopy). The total number of

squares was then divided by 24 to obtain the percent of overhead area not occupied by canopy. The difference between this percentage and 100% is the estimated overstory density or canopy cover in percent. We recorded spherical densiometer readings at 30 cm and 120 cm above the ground facing each cardinal direction from the center of each 2 m x 2 m plot and averaged the canopy cover estimates from each direction to generate an overall canopy cover estimate for 30 cm and 120 cm above the ground within each 2m x 2m plot. Within each 2 m x 2 m plot, we also categorized the overall presence of shrub and/or tree canopy cover (i.e., shrub, forest/tree, forest/shrub mixed, and none) overhead within the center of the plot based on visual inspection. Within the 10 m x 10 plot around each field validation point, we visually estimated the percent cover of shrubs. We only included shrub cover that could be seen or detected from overhead (i.e., from a bird's eye view). We photographed the vegetation, particularly the shrub and tree cover, within the 2m x 2m and 10 m x 10 m field sampling plots. We recorded data and photographs in the field using a Survey123 data form. Shrub and forest/tree cover estimates from the field sampling were compared with the model results to evaluate the accuracy of the canopy cover models.

Using higher resolution aerial imagery for training or validation is an acceptable alternative to field data collection, particularly for areas of no change that are easily distinguished in the aerial imagery. Since field sampling targeted areas of canopy change, areas mapped as no change for forest or shrub (i.e., classification stayed the same between 2022 and 2023) were validated through image interpretation of 0.5 m resolution NAIP imagery. Field cover estimates and NAIP canopy designations at the sample points were compared to the canopy map. Field points where the accuracy of GPS was in question were excluded from the validation.

## Canopy Change

To assess or validate the canopy change model results, we met with the land managers of the site within the

in the Shiawassee study region to review the model results. We compared the canopy change model results, particularly areas of forest and/or shrub loss or gain, to their firsthand knowledge of site conditions and timing and areas where land management had occurred at the site. These comparisons or assessments were qualitative since quantitative estimates of canopy cover have not been collected in the field and are not available for these sites.

#### RESULTS

#### **Canopy Cover Modeling and Assessment**

#### Canopy Cover

We generated canopy cover maps indicating areas with shrub and forest/tree cover from Worldview multispectral imagery and/or DSM data for available time periods for each focal population within the Shiawassee River Headwaters and Barry County study regions. Canopy cover maps for 2011, 2012, 2017, 2022, and 2023 were generated for all or portions of the focal populations in the Shiawassee region based on available imagery (Figure 8; Appendices A, B, and C). Canopy cover maps for 2011, 2012, 2014, and 2017 were generated for all or portions of the focal populations in the Barry County study region based on available imagery (Figure 9, Appendices D and E).

From the canopy cover models and maps, we calculated the estimated area (total acres per class) and percentage (area target class/total area within the population or unit within a population) of shrub, forest/tree, and combined shrub and forest canopy cover in priority areas and EOs within focal populations in the Shiawassee and Barry study regions. We estimated areas/acreages and percentages of shrub and forest cover within two priority sites (

#### ) within the

focal populations (Tables 2 and 3). Shrub and forest cover were estimated within and across specific units that have been delineated and monitored for massasaugas within the two priority sites (Tables 2 and 3). Complete results for shrub and forest cover within the site are provided in Appendices F and G. We also estimated the

areas/acreages and percentages of shrub and forest cover within all the masasasauga EOs (based on remaining habitat were not removed from the land cover masks within these EOs) located within the focal populations in the Shiawassee and Barry study regions (Table 4). Complete canopy cover results for the massasauga EOs located within the two study regions for all available time periods are provided in Appendices H, I, J, K, L, M, N, and O). Areas that were estimated as having 50% or greater canopy cover within the two priority sites and massasauga EOs within the Shiawassee and Barry study regions were flagged for potential management (Tables 2, 3, and 4; Appendices F-O). In general, the estimated percentages of canopy cover of forest and/or shrubs were less than 50% in all the units within both priority sites in all modeled years except for one unit in 2017 and one unit in 2023 within the

priority site and several areas or source features within four EOs across both study regions (Tables 2, 3, and 4; Appendices F-O).



Figure 8. Canopy cover map for focal populations within the Shiawassee River Headwaters study region.



Figure 9. Canopy cover map for focal populations within the Barry County study region.

Table 2. Subset of shrub and forest canopy cover assessment results by percentage for each unit for 2017, 2022, and 2023 within the site withi

in the Shiawassee study region. Full results for this site are provided in Appendices F and G. Units with >50% shrub and/or forest canopy cover are highlighted in red.

|                     | Forest and Shrub Cover - Percent Cover |                   |                 |           |       |                 |        |       |                 |
|---------------------|----------------------------------------|-------------------|-----------------|-----------|-------|-----------------|--------|-------|-----------------|
|                     |                                        | 2023              |                 | 2022 2017 |       |                 |        |       |                 |
| Unit Name           | Forest                                 | Shrub             | Canopy<br>Total | Forest    | Shrub | Canopy<br>Total | Forest | Shrub | Canopy<br>Total |
| River South         | 15.8                                   | 29.4              | 45.1            | 26.4      | 18.4  | 44.8            | 45.8   | 6.6   | 52.5            |
| South               | 0.3                                    | 14.4              | 14.7            | 4.4       | 4.8   | 9.2             | 0.4    | 6.3   | 6.7             |
| North               | 5.0                                    | 6.7               | 11.7            | 4.7       | 11.8  | 16.5            | 2.8    | 7.1   | 9.9             |
| River North         | 17.4                                   | 20.6              | 38.0            | 10.5      | 18.4  | 28.8            | 7.8    | 9.2   | 17.0            |
| North               | 8.5                                    | 8.7               | 17.2            | 5.2       | 13.5  | 18.7            | 26.4   | 22.7  | 49.0            |
| Additional          | 2.1                                    | 6.9               | 9.1             | 3.1       | 5.7   | 8.8             | 1.2    | 29.7  | 30.9            |
| Old Field<br>Upland | 14.3                                   | <mark>8</mark> .5 | 22.8            | 15.7      | 16.2  | 31.9            | 32.4   | 7.8   | 40.2            |
| NW<br>Burn Unit     | 11.0                                   | 12.7              | 23.7            | 8.4       | 12.8  | 21.2            | 8.3    | 5.7   | 14.0            |
| SW<br>Mgmt Unit     | 17.0                                   | 15.3              | 32.3            | 21.6      | 8.6   | 30.2            | 21.9   | 3.7   | 25.6            |
| Pvt                 | 2.8                                    | 29.0              | 31.8            | 5.0       | 17.4  | 22.4            | 3.0    | 10.1  | 13.1            |
| Center<br>Main      | 2.6                                    | 7.0               | 9.6             | 3.5       | 4.4   | 7.9             | 8.5    | 0.5   | 9.0             |
| Center SW           | 1.7                                    | 6.4               | 8.0             | 0.5       | 1.8   | 2.3             | 14.9   | 15.2  | 30.1            |
| Center SE           | 1.3                                    | 3.6               | 4.9             | 3.4       | 6.4   | 9.9             | 2.4    | 2.1   | 4.5             |
| Center N            | 11.8                                   | 14.1              | 25.9            | 17.0      | 7.1   | 24.2            | 14.2   | 8.6   | 22.7            |
| Center W            | 21.2                                   | 7.0               | 28.2            | 21.4      | 14.2  | 35.6            | 28.2   | 1.1   | 29.3            |
| Cut Field North     | 10.0                                   | 13.9              | 23.9            | 13.6      | 5.3   | 18.9            | 13.5   | 5.9   | 19.4            |
| North Field 3       | 27.9                                   | 12.7              | 40.7            | 32.1      | 15.1  | 47.2            | 36.1   | 12.2  | 48.3            |
| North Field 2       | 17.0                                   | 8.1               | 25.1            | 20.4      | 11.9  | 32.3            | 25.7   | 7.3   | 33.0            |
| North Field 1       | 16.4                                   | 6.9               | 23.3            | 15.0      | 12.7  | 27.7            | 10.8   | 4.3   | 15.1            |
| North Hill 1        | 23.4                                   | 15.4              | 38.8            | 28.3      | 2.9   | 31.2            | 22.5   | 2.1   | 24.6            |
| NW Clearing 4       | 23.0                                   | 32.8              | 55.8            | 35.8      | 2.7   | 38.5            | 9.5    | 9.3   | 18.8            |
| NW Clearing 2       | 17.4                                   | 17.3              | 34.7            | 19.4      | 10.9  | 30.3            | 34.9   | 2.3   | 37.2            |
| TOTAL               | 9.6                                    | 12.6              | 22.3            | 10.6      | 10.8  | 21.5            | 13.4   | 8.8   | 22.2            |

Table 3. Shrub and forest cover assessment results by area/acreage and percentage within eachunit for 2012, 2017, and 2022 within thein

the Shiawassee study region. Units with >50% shrub and/or forest canopy cover are highlighted in red.

| Forest and Shrub Cover - Area (acres)            |                                                     |                                                        |                                                                      |                                                    |                                                         |                                                                     |                                                    |                                                           |                                                              |  |
|--------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|--|
|                                                  |                                                     | 2022                                                   |                                                                      | 2017                                               |                                                         |                                                                     | 2012                                               |                                                           |                                                              |  |
| Unit<br>Name                                     | Forest                                              | Shrub                                                  | Total<br>Canopy                                                      | Forest                                             | Shrub                                                   | Total<br>Canopy                                                     | Forest                                             | Shrub                                                     | Total<br>Canopy                                              |  |
| Red                                              | 1.456                                               | 0.692                                                  | 2.148                                                                | 0.606                                              | 0.503                                                   | 1.109                                                               | 0.614                                              | 1.574                                                     | 2.187                                                        |  |
| Green                                            | 0.030                                               | 0.292                                                  | 0.322                                                                | 0.268                                              | 0.408                                                   | 0.676                                                               | 0.287                                              | 1.427                                                     | 1.714                                                        |  |
| Yellow                                           | 1.153                                               | 1.558                                                  | 2.711                                                                | 1.478                                              | 2.321                                                   | 3.799                                                               | 2.234                                              | 2.641                                                     | 4.875                                                        |  |
| Blue                                             | 0.613                                               | 0.489                                                  | 1.102                                                                | 0.254                                              | 1.029                                                   | 1.283                                                               | 0.495                                              | 1.509                                                     | 2.005                                                        |  |
| Orange                                           | 0.102                                               | 0.311                                                  | 0.413                                                                | 0.018                                              | 0.213                                                   | 0.230                                                               | 0.103                                              | 0.303                                                     | 0.406                                                        |  |
| Pink                                             | 1.780                                               | 0.641                                                  | 2.421                                                                | 2.484                                              | 0.221                                                   | 2.705                                                               | 1.927                                              | 0.688                                                     | 2.615                                                        |  |
| TOTAL                                            | 5.13                                                | <b>3.98</b>                                            | 9.12                                                                 | 5.11                                               | 4.70                                                    | 9.80                                                                | 5 <b>.</b> 66                                      | 8.14                                                      | 13.80                                                        |  |
|                                                  |                                                     |                                                        | Fo                                                                   | rest and                                           | Shrub Co                                                | ver – Perce                                                         | ent Cover                                          |                                                           |                                                              |  |
|                                                  |                                                     | 2022                                                   | 2022 2017 2012                                                       |                                                    |                                                         |                                                                     |                                                    |                                                           |                                                              |  |
| Unit                                             |                                                     |                                                        |                                                                      |                                                    |                                                         |                                                                     |                                                    |                                                           |                                                              |  |
| Name                                             | Forest                                              | Shrub                                                  | Total<br>Canopy                                                      | Forest                                             | Shrub                                                   | Total<br>Canopy                                                     | Forest                                             | Shrub                                                     | Total<br>Canopy                                              |  |
| Red                                              | Forest<br>12.5                                      | Shrub                                                  | Total<br>Canopy<br>18.4                                              | Forest<br>5.2                                      | Shrub<br>4.3                                            | Total<br>Canopy<br>9.5                                              | Forest<br>5.3                                      | Shrub<br>13.5                                             | Total<br>Canopy<br>18.7                                      |  |
| Red<br>Green                                     | Forest<br>12.5<br>0.3                               | Shrub<br>5.9<br>3.4                                    | Total<br>Canopy<br>18.4<br>3.7                                       | Forest<br>5.2<br>3.1                               | Shrub<br>4.3<br>4.7                                     | Total<br>Canopy<br>9.5<br>7.9                                       | Forest<br>5.3<br>3.3                               | Shrub<br>13.5<br>16.6                                     | Total<br>Canopy<br>18.7<br>19.9                              |  |
| Red<br>Green<br>Yellow                           | Forest<br>12.5<br>0.3<br>10.4                       | Shrub<br>5.9<br>3.4<br>14.0                            | Total     Canopy     18.4     3.7     24.4                           | Forest<br>5.2<br>3.1<br>13.3                       | Shrub<br>4.3<br>4.7<br>20.8                             | Total     Canopy     9.5     7.9     34.1                           | Forest<br>5.3<br>3.3<br>20.1                       | Shrub<br>13.5<br>16.6<br>23.7                             | Total     Canopy     18.7     19.9     43.8                  |  |
| Red<br>Green<br>Yellow<br>Blue                   | Forest<br>12.5<br>0.3<br>10.4<br>9.1                | Shrub<br>5.9<br>3.4<br>14.0<br>7.3                     | Total     Canopy     18.4     3.7     24.4     16.4                  | Forest<br>5.2<br>3.1<br>13.3<br>3.8                | Shrub<br>4.3<br>4.7<br>20.8<br>15.3                     | Total     Canopy     9.5     7.9     34.1     19.1                  | Forest<br>5.3<br>3.3<br>20.1<br>7.4                | Shrub     13.5     16.6     23.7     22.4                 | Total     Canopy     18.7     19.9     43.8     29.8         |  |
| Red<br>Green<br>Yellow<br>Blue<br>Orange         | Forest<br>12.5<br>0.3<br>10.4<br>9.1<br>1.5         | Shrub     5.9     3.4     14.0     7.3     4.5         | Total     Canopy     18.4     3.7     24.4     16.4     6.0          | Forest<br>5.2<br>3.1<br>13.3<br>3.8<br>0.3         | Shrub<br>4.3<br>4.7<br>20.8<br>15.3<br>3.1              | Total     Canopy     9.5     7.9     34.1     19.1     3.4          | Forest<br>5.3<br>3.3<br>20.1<br>7.4<br>1.5         | Shrub     13.5     16.6     23.7     22.4     4.4         | Total     Canopy     18.7     19.9     43.8     29.8     5.9 |  |
| Red<br>Green<br>Yellow<br>Blue<br>Orange<br>Pink | Forest<br>12.5<br>0.3<br>10.4<br>9.1<br>1.5<br>22.5 | Shrub     5.9     3.4     14.0     7.3     4.5     8.1 | Total     Canopy     18.4     3.7     24.4     16.4     6.0     30.6 | Forest<br>5.2<br>3.1<br>13.3<br>3.8<br>0.3<br>31.4 | Shrub     4.3     4.7     20.8     15.3     3.1     2.8 | Total     Canopy     9.5     7.9     34.1     19.1     3.4     34.2 | Forest<br>5.3<br>3.3<br>20.1<br>7.4<br>1.5<br>24.4 | Shrub     13.5     16.6     23.7     22.4     4.4     8.7 | Total   Canopy   18.7   19.9   43.8   29.8   5.9   33.1      |  |



(acres) as well as canopy percentage based on the extent of the priority areas.

Table 4. Subset of forest and shrub cover assessment results for 2023 for eastern massasauga (EMR) element occurrences (EOs) located within focal populations in the Shiawassee River Headwaters study region. Portions of individual source features or sub-regions within EOs were masked to exclude areas of non-EMR habitat (e.g., developed, agriculture, water, etc). Forest and shrub cover assessments focused on areas within the source features or sub-regions within EOs that were not masked and were presumed to be EMR habitat. EO source features/sub-regions with >50% canopy cover are highlighted in red. Full forest and shrub cover assessment results for EOs within the two study regions are provided in Appendices H, I, J, K, L, M, N, and O.

| Shiawassee River Headwaters Study Region Element Occurrences – Canopy Cover 2023 |                   |       |        |          |              |               |            |  |  |
|----------------------------------------------------------------------------------|-------------------|-------|--------|----------|--------------|---------------|------------|--|--|
| EO_ID                                                                            | Forest            | Shrub | Total  | Total EO | Percent      | Percent Cover |            |  |  |
| split                                                                            | (m²)              | (m²)  | Canopy | Area     | Cover Forest | Cover Shrub   | All Canopy |  |  |
| 3130_10                                                                          | 1304              | 80    | 1384   | 1953     | 66.77%       | 4.10%         | 70.87%     |  |  |
| 3130_9                                                                           | 356               | 1024  | 1380   | 1953     | 18.23%       | 52.43%        | 70.66%     |  |  |
| 3130_11                                                                          | 8                 | 1164  | 1172   | 1953     | 0.41%        | 59.60%        | 60.01%     |  |  |
| 6223_19                                                                          | 11 <mark>6</mark> | 1020  | 1136   | 1953     | 5.94%        | 52.23%        | 58.17%     |  |  |
| 6223_13                                                                          | 12                | 20    | 32     | 63       | 19.05%       | 31.75%        | 50.79%     |  |  |
| 3130_2                                                                           | 220               | 1536  | 1756   | 3659     | 6.01%        | 41.98%        | 47.99%     |  |  |
| 6223_18                                                                          | 556               | 376   | 932    | 1953     | 28.47%       | 19.25%        | 47.72%     |  |  |
| 3130_17                                                                          | 0                 | 864   | 864    | 1953     | 0.00%        | 44.24%        | 44.24%     |  |  |
| 3130_15                                                                          | 888               | 8     | 896    | 2186     | 40.62%       | 0.37%         | 40.99%     |  |  |

In addition to modeling and estimating forest and shrub cover for each population extent, we conducted a neighborhood assessment for a portion of the Shiawassee River Headwaters study region. For this analysis, the percent canopy cover within a 10 m x10 m (5 x 5 pixel area) neighborhood window around each pixel were calculated. These neighborhood values were calculated for shrubs, forest, and combined total canopy. Maps illustrating the results of the neighborhood assessment for the **Section 20** site are provided in Figures 11 and 12. These results indicate that although the estimated percentages of forest and tree cover were less than 50% in almost all the units within one of the priority sites (i.e., **Section 20**) that was included in this analysis, shrub and/or forest cover was higher than 50% in

some of the 10 m x 10 m plots or at specific locations within the units (Figures 11 and 12).



Figure 11. Base imagery (A) and results of neighborhood assessment of canopy within a 10 m x 10 m plot around each pixel for total canopy/shrub and forest cover combined (B) and shrub (C) and forest (D) canopy cover separately within the eastern half of an eastern massasauga priority site within the eastern because the statement of the color in B, C, and D indicate higher percent canopy cover.



Figure 12. Base imagery (A) and results of neighborhood assessment of canopy within a 10 m x 10 m plot around each pixel for total canopy/shrub and forest cover combined (B) and shrub (C) and forest (D) canopy cover separately within the western half of an eastern massasauga priority site within the second se

## Canopy Change

To better understand where changes in shrub, forest and total canopy were occurring, final canopy maps from different dates with overlapping footprints were intersected to create canopy cover change maps for focal populations within each of the two study regions (Figures 13 and 14). We compared estimated areas (acreages) and percentages of forest and shrub cover over time where available to identify areas where forest and/or shrub cover have increased or decreased to better understand general succession and shrubification patterns throughout the focal populations, particularly within two priority sites (

populations (Figures 15, 16, and 17). These maps allow managers to identify more dynamic and stable canopy areas within the focal study populations. Areas with increasing canopy/shrub trends were noted and could be evaluated for potential management.

Canopy change results varied by site, across units within a site, and across massasauga EOs and focal populations within the two study regions. Within the priority site in the sarea, shrub cover, in general, has been gradually increasing from 2011 to 2023, with the exception of 2012 which had a large increase in mapped shrub cover (Table 2, Figure 10, Appendices F and G). However, shrub cover did decrease in most units between 2012 and 2017 and in some units during other time periods (e.g., in Content W, North Field 1, North Field 2, and North Field 3 from 2022-2023) (Table 2). Within the priority site in the shrub cover has been gradually decreasing from 2012 to 2022 in general although shrub cover did increase in several units from 2017 to 2022 (Table 3, Figure 10).



Figure 13. Composite canopy change map for eastern massasauga focal populations and element occurrences (EOs) within the Shiawassee River Headwaters study region between 2012 and 2017 or 2022 and 2023.



Figure 14. Composite canopy change map for eastern massasauga focal populations and element occurrences (EOs) within the Barry County study region between 2011, 2014, and/or 2017.


Figure 15. Canopy change maps for four time periods between 2011 and 2023 for the eastern half of an eastern massasauga priority site, **and the set of the eastern**, located within the in the Shiawassee River Headwaters study region.



Figure 16. Canopy change maps for four time periods between 2011 and 2023 for the western half of an eastern massasauga priority site, **and the set of the** 



Figure 17. Canopy change maps for two time periods between 2012 and 2022 for an eastern massasauga priority site,

in the Shiawassee River Headwaters study region.

#### Canopy Height Change

Comparing available DSM data within intersecting footprints between different time periods to assess canopy height changes had mixed results. We focused this analysis on two priority sites within the populations. We calculated average, minimum, and maximum change trends for each of the seven canopy change classes within the While some local area spot checks seemed to be working (Figure 18), analysis of trends across larger areas within the priority sites raised some concern. We expected that, in general, woody vegetation classes would grow taller both throughout one season and across multiple years. However, the data showed average losses across almost all categories ranging from a 20 cm decrease to losses of 2 meters from October 2013 to August 2017-. There were similar losses observed when comparing the DSM data from May 2012 to August 2017, except for the forest/shrub mix cover class which increased 1 m to 2.5 m on average. Comparisons of DSM data from August 2017 and May 2012, respectively, to March 2010 showed increases in all classes ranging from 6 m – 19 m. Interannual comparisons between June 2017 - August 2017 had forest and shrub regions growing three to four meters. These results seemed highly variable and inaccurate. Upon further investigation, discrepancies across the layer rendered this analysis impossible with the current data as the DSMs are not normalized between scenes. The discrepancies are not uniform across the scene; therefore, correction and direct comparison were not feasible.



Figure 18. Example of shrubification throughout time being captured by the difference in DSMs.

#### **Field Validation**

#### Canopy Cover

Using higher resolution aerial imagery for training or validation is an acceptable alternative to field data collection, particularly for areas of no change that are easily distinguished in the aerial imagery. Since the field validation focused on areas of canopy change, areas mapped as no change for forest or shrub from 2022 to 2023 (i.e., they were consistent in 2022 or 2023), were validated through image interpretation of 0.5 m NAIP imagery from 2023. The results of this comparison are presented in the accuracy tables of Table 5. As expected, the canopy cover map based on the Worldview 2023 imagery for the securacy (93% overall), while the within the site wit

After integrating the field data collected from canopy change areas with the NAIP validation data on unchanged areas, the **second second secon** 

These validation results were based on comparisons of the forest and shrub cover data collected from the 2 m x 2 m sampling plots with the canopy models/maps. Since the percent shrub cover (from a bird's eye-view) data from the 10 m x 10 m sampling plots did not include percent forest canopy cover, we were unable to compare these data to the remote sensing products at this time.

## Table 5. Error matrices for the non-edge forest and shrub regions within thesites in the

using NAIP

imagery to assess accuracy of the canopy cover model results.

|                        | Comb   | oined (NA | IP validat | tion)    | Combined (NAIP validation) |  |  |  |  |  |  |  |  |  |  |
|------------------------|--------|-----------|------------|----------|----------------------------|--|--|--|--|--|--|--|--|--|--|
|                        | Forest | Shrub     | None       | Sum      | User's                     |  |  |  |  |  |  |  |  |  |  |
|                        | TOTESt | Shirub    | None       | Juin     | Accuracy                   |  |  |  |  |  |  |  |  |  |  |
| Forest                 | 37     | 8         | 0          | 45       | 0.82                       |  |  |  |  |  |  |  |  |  |  |
| Shrub                  | 3      | 31        | 0          | 34       | 0.91                       |  |  |  |  |  |  |  |  |  |  |
| None                   | 0      | 1         | 0          | 1        | 1                          |  |  |  |  |  |  |  |  |  |  |
| Sum                    | 40     | 40        | 0          | Over     | all Accuracy               |  |  |  |  |  |  |  |  |  |  |
| Producer's<br>Accuracy | 0.93   | 0.76      | 0          |          | 0.85                       |  |  |  |  |  |  |  |  |  |  |
|                        |        |           | (NAI       | P valida | tion)                      |  |  |  |  |  |  |  |  |  |  |
|                        | Forest | Shrub     | None       | Sum      | User's<br>Accuracy         |  |  |  |  |  |  |  |  |  |  |
| Forest                 | 17     | 0         | 0          | 17       | 1.00                       |  |  |  |  |  |  |  |  |  |  |
| Shrub                  | 3      | 20        | 0          | 23       | 0.87                       |  |  |  |  |  |  |  |  |  |  |
| None                   | 0      | 0         | 0          | 0        | 1                          |  |  |  |  |  |  |  |  |  |  |
| Sum                    | 20     | 20        | 0          | Over     | all Accuracy               |  |  |  |  |  |  |  |  |  |  |
| Producer's<br>Accuracy | 0.85   | 1         | 0          |          | 0.93                       |  |  |  |  |  |  |  |  |  |  |
|                        |        | (         | NAIP vali  | dation)  |                            |  |  |  |  |  |  |  |  |  |  |
|                        | Forest | Shrub     | None       | Sum      | User's<br>Accuracy         |  |  |  |  |  |  |  |  |  |  |
| Forest                 | 20     | 8         | 0          | 28       | 0.71                       |  |  |  |  |  |  |  |  |  |  |
| Shrub                  | 0      | 11        | 0          | 11       | 1                          |  |  |  |  |  |  |  |  |  |  |
| None                   | 0      | 1         | 0          | 1        | 1                          |  |  |  |  |  |  |  |  |  |  |
| Sum                    | 20     | 20        | 0          | Over     | all Accuracy               |  |  |  |  |  |  |  |  |  |  |
| Producer's<br>Accuracy | 1      | 0.55      | 1          |          | 0.76                       |  |  |  |  |  |  |  |  |  |  |

| Table 6. Accura | Table 6. Accuracy for the 2023 canopy model results. |                  |                                   |                            |  |  |  |  |  |  |  |
|-----------------|------------------------------------------------------|------------------|-----------------------------------|----------------------------|--|--|--|--|--|--|--|
|                 |                                                      | Overall Accuracy | Average<br>Producer's<br>Accuracy | Average User's<br>Accuracy |  |  |  |  |  |  |  |
| Tatal           | Combined 2023                                        | 84.9%            | 74.0%                             | 71.2%                      |  |  |  |  |  |  |  |
| Capapy          |                                                      | 83.0%            | 79.8%                             | 83.1%                      |  |  |  |  |  |  |  |
| Сапору          |                                                      | 76.2%            | 70.1%                             | 68.2%                      |  |  |  |  |  |  |  |
| Forest and      | Combined 2023                                        | 68.4%            | 68.2%                             | 68.9%                      |  |  |  |  |  |  |  |
| Shrub           |                                                      | 74.0%            | 74.3%                             | 75.8%                      |  |  |  |  |  |  |  |
| Separate        |                                                      | 62.2%            | 62.1%                             | 60.4%                      |  |  |  |  |  |  |  |

#### Canopy Change

Accuracy of the canopy change assessments for the

site within the

was variable based on information from the land manager of this site. At the , intensive shrub removal efforts in eastern massasauga habitats started in 2016. For example, in the center of the Blue Unit, the canopy change model/map for 2012-2017 (Figure 15) indicated shrub loss which likely corresponds to shrub removal that occurred in this area in 2016. However, the canopy change model/map for 2022-2023 indicated shrub loss in the same area but no management treatment occurred in this area during this time period (Figure 15). In the Yellow Unit, dense buckthorn was removed in the western end of the unit in 2019 and the area was burned in 2021. The canopy change map for 2017-2022 (Figure 15) indicated some shrub loss in the western end of the Yellow Unit but map appeared to underrepresent the amount of shrub removal or loss that had occurred in that area based on feedback from the land manager. The Shrub removal occurred in the Gold Unit and the northwest end of the Silver Unit from 2018-2021. The canopy change map for 2017-2021 accurately indicated extensive shrub loss in the Gold Unit (Figure 16). The canopy change map for 2017-2022 indicated forest loss in the northwest end of the Silver Unit instead of shrub loss but it did capture loss of canopy in this area during this time period. Similarly, the removal of shrubs (i.e., dogwood, autumn olive, and honeysuckle) that occurred in the Purple Unit between 2018-2021 was largely represented in the canopy change map from 2017-2022 as forest loss instead of shrub loss (Figure 15).

Accuracy of the canopy change assessments for the **accuracy** of the canopy change assessments for the **and manager** of this site. Shrub removal occurred in two small areas in the southwestern and southeastern portions of the site in 2022. The canopy change map for this site for 2017-2022 (Figure 17) indicated some shrub loss in the treated areas but not as extensive as it should have been based on information from the site manager. Several areas within this site also were burned in 2014, 2015, 2016, 2017, 2021, or 2022. However, the canopy change maps from 2012-2017 and 2017-2022 indicated some shrub loss in only two of the burned areas during the right time period (e.g., west side of the Green Unit from 2017-2021 and south side of the Orange Unit from 2012-2017) (Figure 17). This may have been due to low density of shrubs initially present in the burned areas prior to treatment and/or the prescribed fire did not cause significant mortality or loss of shrubs and/or trees.

Some of the canopy change maps for both sites also indicated shrub or forest loss or gain in areas where management had not occurred or site managers could not verify. Some of the shrub loss areas (or portions of these areas) could have been due to natural causes such as flooding from beavers (e.g., southeastern end of the **shrub** site in the 2012-2017 canopy change map). Other areas mapped as shrub or forest loss did not appear to be accurate based on current or available aerial imagery (e.g., southern end of the **shrub** site in the 2017-2022 canopy change map).

#### **Online Web Application**

Michigan Tech Research Institute shared data and canopy model results with MNFI in two ways: 1) zipped copies of the GIS data and Excel analysis; and 2) through an ArcGIS online shared group. A web application was also generated for easy data viewing (Figure 19). Along the top right green menu bar (see Figure 19), the user has the option to view the legend for currently displayed layers (legend icon), toggle on/off individual boundaries (polygon icon), toggle on/off point layers (3 points icon), change displayed product layers including canopy classifications, canopy change files and landcover mask layers (layer stack icon), as well as view the individual RGB composites for each of the mapped dates. On the upper left side, the user is provided tools to zoom in or out, search an address, return to the home view (house icon), find their location on the map (target icon), change the base layer (4 squares icon), measure distances or areas (measuring tape icon), view the legend, select features, and use a swipe between layers. Along the bottom of the window an up arrow allows the user to view the associated metadata through an attribute.



Figure 19. Example of the web application built to view data layers for the canopy cover and canopy change model results for the Shiawassee River Headwaters and Barry County study regions.

#### DISCUSSION

Results from this pilot approach demonstrate that using high resolution Worldview 8 band imagery and corresponding DSMs (produced from stereo pairs of Worldview imagery) can provide a useful resource for monitoring presence and change in extent of forest and shrub canopy for eastern massasauga habitat. Several maps for the study regions were produced from the early 2000s to 2017, and change maps between years showed gain or loss in shrub and/or forest cover. These products were made available via a WebApp as well as direct sharing of layers (see Results). Initial efforts to validate the 2023 canopy cover model at two sites using NAIP imagery and field sampling resulted in accuracy rates of around 80% or higher, particularly when forest and shrub cover were combined. However, the accuracy of the canopy change models seemed to vary depending on the area and time period.

This analysis was constrained by available data extents and time periods. The available multispectral imagery did not cover the entirety of the desired study regions for each mapped year and did not always have corresponding DSM footprints or dates to match. The DSM data was only available up until 2017 and so the most recent multispectral images from June 2022 and 2023 did not have any relative canopy height data to train between the shrub and forest classes, which is particularly important because these can be otherwise spectrally similar. Additionally, while the worldview DSMs offered high-resolution single date data that was beneficial for canopy classifications, these data were not normalized between scenes and so canopy height changes throughout time could not be directly compared.

While this analysis found the Worldview DSM to be useful for distinguishing relative height including differences in shrub and tree heights, a method of normalization between dates of DSM products and improved future DSM product availability would make the resource even more useful, as we would have been able to assess changes in vegetation height and produced more accurate maps for 2022-2023 (when DSMs were unavailable). Correspondence with the Polar Geospatial Center provided information on future 2022 and 2023 DSM products (under the EarthDEM project) that would be available to Federal U.S. government agencies and grant recipients from those agencies soon. This would improve the 2022-2023 map products.

The approach of integrating the DSM and multi-band imagery may also be applied to other data sources that provide multi-band data and stereo images to produce a DSM, such as unmanned aerial vehicles (UAVs) (e.g., drones) with their overlapping flight lines. While drone imagery would not allow for assessing change back in time, it provides a tool to obtain timely multi-spectral and DSM data over an area of interest at fairly low cost. This approach may provide higher resolution, more accurate, and more timely data for assessing and monitoring canopy cover and succession. Other supplemental data that may be useful in massasauga habitat analysis would be LiDAR. While not routinely collected, LiDAR data would provide data on tree heights and a digital elevation model (DEM) which could provide a baseline for change analysis (note that LiDAR data are typically collected in spring at leaf off). If the LiDAR could be matched in time to a DSM, it could be normalized. Other sources of DSMs with high resolution imagery or NAIP digital products would allow for the improvement and expansion of this analysis.

Reviewing similar studies (e.g., Waser and Ginzler 2008) may provide additional insights that could enhance this analysis.

For future field validation efforts, a focus on both areas of change and non-change in forest and shrub cover would fully assess the accuracy of canopy cover and change maps. The field data collection in summer 2023 was focused on areas of change, which were primarily on edges and were difficult to capture in the field for comparison to the remote sensing product because of geolocation errors and also timing of the Worldview imagery (early June 2023 when leaf out and tree and shrub growth w*ere* minimal) in comparison to late summer/fall field data collection when leaves were fully flushed. For field validation of both individual date maps and of canopy cover change from remote sensing, a birds-eye view for trees and shrubs is needed to assess in the field what the sensor is viewing. In this study, this was done for shrub cover only in the 10 m x 10 m plots and a comparison to the remote sensing could not be evaluated.

While the use of high-resolution Worldview imagery and corresponding DSMs appears promising for mapping the extent and change in canopy/forest and shrub cover in open or early successional habitat for eastern massasaugas, additional work is needed to further evaluate and increase the accuracy and effectiveness of this approach. This includes securing additional and current DSMs and Worldview imagery and conducting field validation in additional areas within priority massasauga populations. With more complete DSMs and Worldview imagery spatially and temporally and further evaluation and refinement, this approach could provide a more efficient approach for assessing canopy cover within eastern massasauga populations in Michigan, particularly priority or focal populations. This approach could be used to identify potential sites that could benefit from habitat management to maintain open canopy conditions and landscape connectivity for massasaugas within focal populations. This information would help the MDNR and its partners target and prioritize management efforts to sustain the eastern massasauga in Michigan and better determine and secure resources needed to accomplish this. This approach also could be used to monitor and inform adaptive management efforts, particularly if used in conjunction with massasauga population monitoring. Additionally, this approach could potentially be applied to eastern massasauga populations in other states/province as well as other focal species that rely on open canopy or early successional habitat conditions in Michigan.

#### LITERATURE CITED

- Breiman, L. 2001. Random Forests. Machine Learning 45(1):5-32. doi: 10.1023/A:1010933404324
- DeGregorio, B.A., J.V. Manning, N. Bieser, and B.A. Kingsbury. 2011. The spatial ecology of the eastern massasauga (*Sistrurus c. catenatus*) in Northern Michigan. Herpetologica 67: 71-79.
- Derosier, A.L., S.K. Hanshue, K.E. Wehrly, J.K. Farkas, and M.J. Nichols. 2015. Michigan's Wildlife Action Plan. Michigan Department of Natural Resources, Lansing, MI. http://www.michigan.gov/dnrwildlifeaction
- Harvey, D.S. and P.J. Weatherhead. 2006. A test of the hierarchical model of habitat selection using eastern massasauga rattlesnakes (*Sistrurus c. catenatus*). Biological Conservation 130: 206-216.
- Johnson, G. and A.R. Breisch. 1993. The eastern massasauga rattlesnake in New York: occurrence and habitat management. Pages 48-54 *in* International symposium and workshop on the conservation of the eastern massasauga rattlesnake, *Sistrurus catenatus catenatus*. B. Johnson and V. Menzies, editors. Toronto Zoo, Toronto, Ontario, Canada.
- Kingsbury, B.A. 2002. R9 conservation approach for the eastern massasauga (*Sistrurus c. catenatus*) on the Huron-Manistee National Forests. Unpublished report to the United States Forest Service, Indiana-Purdue University, Ft. Wayne, IN, USA.
- Kingsbury, B.A., J.C. Marshall, and J. Manning. 2003. Activity patterns and spatial resource selection of the eastern massasauga rattlesnake in northeastern Indiana. Unpublished report, Indiana-Purdue University, Ft. Wayne, IN.
- Klassen, J., C. Porter, P. Morin, I. Howat, M. Noh, B. Bates, K. Peterman, S. Keesey, M. Schlenk, J. Gardiner, K. Tomko, M. Willis, C. Kelleher, M. Cloutier, E. Husby, S. Foga, H. Nakamura, M. Platson, M. Wethington, Jr., C. Williamson, G. Bauer, J. Enos, G. Arnold, W. Kramer, P. Becker, A. Doshi, C. D'Souza, P. Cummens, F. Laurier, and M. Bojesen. 2021. GLARS-DSM. https://glars.org, V1, [04/10/2023].
- Lee, Y. 2017. Developing management plans for core eastern massasauga populations in Michigan – Phase I. Michigan Natural Features Inventory, Report Number 2017-08, Lansing, MI.
- Lee, Y. and H. D. Enander. 2015. Developing an eastern massasauga conservation plan for Michigan – Phase I. Michigan Natural Features Inventory, Report Number 2015-10, Lansing, MI.
- Lipps, G.J. 2008. Survey of the eastern massasauga in northeastern Ohio. Unpublished report to the Ohio Division of Wildlife, Columbus, OH.
- Marshall, J.C., J. Manning, and B. Kingsbury. 2006. Movement and macrohabitat selection of the eastern massasauga in fen habitat. Herpetologica 62: 141-150.
- Marwaha, N. and E. Duffy. 2021. Everything you need to know about digital elevation models (DEMs), digital surface models (DSMs), and digital terrain models (DTMs). <<u>https://up42.com/blog/everything-you-need-to-know-about-digital-elevation-models-dem-</u>

digital#:~:text=A%20Digital%20Surface%20Model%20(DSM,is%20nothing%20else%20above %20it)>. Accessed 5 October 2023.

- Michigan Natural Features Inventory (MNFI). 2023. Michigan Natural Heritage Database, Lansing, MI.
- Moore, J.A. and J.C. Gillingham. 2006. Spatial ecology and multi-scale habitat selection by a threatened rattlesnake: the eastern massasauga (*Sistrurus catenatus catenatus*). Copeia 2006: 742–751.
- Naskar, A. 2021. 3D Digital surface model with python and pylidar. < <u>https://thinkinfi.com/3d-digital-surface-model-with-python-and-pylidar/</u>>. Accessed 22 October 2023.
- Pomara, L.Y., O.E. Ledee, K.J. Martin, and B. Zuckerberg. 2014. Demographic consequences of climate change and land cover help explain a history of extirpations and range contractions in a declining snake species. Global Change Biology 20: 2087-2099.
- Reinert, H.K. 1978. The ecology and morphological variation of the massasauga rattlesnake, *Sistrurus catenatus*. MS Thesis, Clarion State College, Clarion, PA.
- Reinert, H.K. and L.M. Buskar. 1992. The massasauga rattlesnake in Pennsylvania: continuing habitat loss and population isolation. Pages 55-59 *in* International symposium and workshop on the conservation of the eastern massasauga rattlesnake, *Sistrurus catenatus catenatus*. B. Johnson and V. Menzies, editors. Toronto Zoo, Toronto, Ontario, Canada.
- Sage, J.R. 2005. Spatial ecology, habitat utilization, and hibernation ecology of the eastern massasauga (*Sistrurus catenatus catenatus*) in a disturbed landscape. MS Thesis, Purdue University, Ft. Wayne, IN, USA.
- Seigel, R. A. 1986. Ecology and conservation of an endangered rattlesnake, *Sistrurus catenatus*, in Missouri, USA. Biological Conservation 35:333–346.
- Szymanski, J., C. Pollack, L. Ragan, M. Redmer, L. Clemency, K. Voorhies, and J. JaKa. Species status assessment for the eastern massasauga rattlesnake (*Sistrurus catenatus*). SSA Report Version 2. July 2016.
- Thacker, A.J. 2020. Great Lakes snake: estimating the occupancy and detection probabilities of the eastern massasauga rattlesnake (*Sistrurus catenatus*). MS Thesis, Grand Valley State University, Allendale, MI, USA. https://scholarworks.gvsu.edu/theses/984
- Thacker, A.J., E.T. Hileman, P. Keenlance, E.M. McCluskey, A. Swinehart, J. Kovach, and J.A.
   Moore. 2023. Modeling occupancy and detection probabilities to update the status of threatened eastern massasauga rattlesnake populations. Global Ecology and Conservation 43. e02422. 10.1016/j.gecco.2023.e02422.
- U.S. Fish and Wildlife Service (USFWS). 2016. Endangered and threatened wildlife and plants: threatened species status for the eastern massasauga rattlesnake. U.S. Fish and Wildlife Service Final Rule. 50 CFR Part 17, Docket No. FWS-R3-ES-2015-0145; 4500030113, RIN 1018-BA98. Federal Register 81(190):67193-67214.
- U.S. Fish and Wildlife Service (USWFS). 2021. Recovery plan for the eastern massasauga rattlesnake (*Sistrurus catenatus*). USFWS Great Lakes Region (Region 3), Bloomington, MN.
- Waser, L. T., E. Baltsavias, K. Ecker, H. Eisenbeiss, C. Ginzler, M. Küchler, P. Thee, and L. Zhang.
   2008. High-resolution digital surface models (DSMs) for modelling fractional shrub/tree cover in a mire environment. International Journal of Remote Sensing 29(5):1261 1276.
- Weiss, A. 2001. Topographic position and landforms analysis. Poster presentation, ESRI user conference, San Diego, CA (Vol. 200).
- Wright, B.A. 1941. Habit and habitat studies of the massasauga rattlesnake (*Sistrurus catenatus catenatus* Raf.) in Northeastern Illinois. American Midland Naturalist 25: 659-672.

APPENDIX A: CANOPY COVER MAPS FOR THE SHIAWASSEE RIVER HEADWATERS STUDY REGION FROM 2012, 2017, 2022, AND 2023.

APPENDIX B: CANOPY COVER MAPS FOR THE STUDY REGION FROM 2011, 2012, 2017, 2022, AND 2023.

SITE WITHIN THE SHIAWASSEE RIVER HEADWATERS

| J.      |  |  |
|---------|--|--|
|         |  |  |
| المرز ر |  |  |
|         |  |  |
| Trans.  |  |  |
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |
| 5       |  |  |
| 50 m    |  |  |
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |

APPENDIX B (Continued): CANOPY COVER MAPS FOR THE HEADWATERS STUDY REGION from 2011, 2012, 2017, 2022, and 2023.

SITE WITHIN THE SHIAWASSEE RIVER



APPENDIX C: CANOPY COVER MAPS FOR THE SHIAWASSEE SITE WITHIN THE SHIAWASSEE RIVER HEADWATERS STUDY REGION FROM 2012, 2017, AND 2022.



APPENDIX D: CANOPY COVER MAPS FOR THE BARRY COUNTY STUDY REGION FROM 2011, 2014, AND 2017.



APPENDIX D (Continued): CANOPY COVER MAPS FOR THE BARRY COUNTY STUDY REGION FROM 2011, 2014, AND 2017.

| A STATE | 12、新学校的 |  |
|---------|---------|--|
|         |         |  |
|         |         |  |
|         |         |  |
|         |         |  |
|         |         |  |
|         |         |  |
|         |         |  |
|         |         |  |
|         |         |  |
|         |         |  |
|         |         |  |
|         |         |  |
|         |         |  |
|         |         |  |
|         |         |  |
|         |         |  |
|         |         |  |
|         |         |  |
|         |         |  |
|         |         |  |
|         |         |  |
|         |         |  |
|         |         |  |
|         |         |  |

APPENDIX E: CANOPY COVER MAPS FOR THE BARRY COUNTY STUDY REGION FROM 2014. SITE WITHIN THE



### APPENDIX F: CANOPY COVER ESTIMATES IN AREA/ACRES FOR UNITS WITHIN THE SHIAWASSEE RIVER HEADWATERS STUDY REGION FROM 2011-2023.

SITE IN THE

|                  |        |       |                 |        |       |                 | Canopy Cover - Area (acres) |       |                 |        |       |                 |        |       |                 |
|------------------|--------|-------|-----------------|--------|-------|-----------------|-----------------------------|-------|-----------------|--------|-------|-----------------|--------|-------|-----------------|
|                  |        | 2023  |                 |        | 2022  |                 |                             | 2017  |                 |        | 2012  |                 |        | 2011  |                 |
| Unit Name        | Forest | Shrub | Canopy<br>Total | Forest | Shrub | Canopy<br>Total | Forest                      | Shrub | Canopy<br>Total | Forest | Shrub | Canopy<br>Total | Forest | Shrub | Canopy<br>Total |
| River South      | 1.98   | 3.69  | 5.67            | 3.32   | 2.32  | 5.63            | 5.76                        | 0.83  | 6.59            | 2.67   | 3.42  | 6.09            | 3.13   | 1.05  | 4.18            |
| South            | 0.05   | 2.28  | 2.33            | 0.70   | 0.76  | 1.46            | 0.06                        | 0.99  | 1.05            | 0.02   | 3.93  | 3.95            | 0.02   | 1.17  | 1.19            |
| North            | 0.98   | 1.31  | 2.30            | 0.92   | 2.31  | 3.23            | 0.54                        | 1.39  | 1.93            | 0.12   | 4.94  | 5.05            | 0.03   | 1.45  | 1.48            |
| North            | 1.59   | 1.88  | 3.47            | 0.95   | 1.68  | 2.63            | 0.71                        | 0.84  | 1.55            | 0.14   | 2.47  | 2.61            | 0.26   | 1.39  | 1.65            |
| North            | 0.74   | 0.76  | 1.49            | 0.45   | 1.17  | 1.62            | 2.29                        | 1.97  | 4.27            | 0.18   | 2.75  | 2.93            | 0.22   | 0.82  | 1.04            |
| Additional       | 0.34   | 1.09  | 1.43            | 0.48   | 0.90  | 1.38            | 0.19                        | 4.67  | 4.86            | 0.04   | 5.57  | 5.61            | 0.19   | 2.09  | 2.27            |
| Old Field Upland | 1.14   | 0.68  | 1.81            | 1.24   | 1.29  | 2.53            | 2.57                        | 0.62  | 3.20            | 0.68   | 1.78  | 2.45            | 0.62   | 0.05  | 0.67            |
| NW<br>Burn Unit  | 4.45   | 5.12  | 9.57            | 3.41   | 5.19  | 8.59            | 3.35                        | 2.31  | 5.66            | 1.95   | 4.67  | 6.62            | 0.86   | 1.66  | 2.53            |
| SW<br>Mgmt Unit  | 1.84   | 1.65  | 3.49            | 2.33   | 0.93  | 3.26            | 2.37                        | 0.40  | 2.77            | 1.70   | 1.31  | 3.02            | 1.80   | 0.13  | 1.94            |
| Pvt              | 0.17   | 1.79  | 1.96            | 0.31   | 1.07  | 1.38            | 0.18                        | 0.63  | 0.81            | 0.04   | 1.62  | 1.66            | 0.03   | 0.77  | 0.80            |
| Center<br>Main   | 0.36   | 0.98  | 1.35            | 0.49   | 0.61  | 1.10            | 1.18                        | 0.08  | 1.26            | 0.14   | 0.41  | 0.55            | 0.15   | 0.65  | 0.80            |
| Center SW        | 0.08   | 0.30  | 0.38            | 0.02   | 0.08  | 0.11            | 0.71                        | 0.73  | 1.44            | 0.00   | 0.05  | 0.05            | 0.01   | 0.09  | 0.10            |
| Center SE        | 0.08   | 0.23  | 0.32            | 0.22   | 0.41  | 0.63            | 0.15                        | 0.13  | 0.29            | 0.00   | 0.05  | 0.05            | 0.00   | 0.09  | 0.09            |
| Center N         | 0.31   | 0.37  | 0.68            | 0.45   | 0.19  | 0.63            | 0.37                        | 0.22  | 0.60            | 0.02   | 0.41  | 0.43            | 0.10   | 0.02  | 0.12            |
| Center W         | 0.21   | 0.07  | 0.28            | 0.21   | 0.14  | 0.35            | 0.28                        | 0.01  | 0.29            | 0.00   | 0.21  | 0.21            | 0.04   | 0.01  | 0.05            |
| Cut Field North  | 0.24   | 0.33  | 0.58            | 0.33   | 0.13  | 0.45            | 0.32                        | 0.14  | 0.47            | 0.07   | 0.73  | 0.80            | 0.06   | 0.23  | 0.29            |
| North Field 3    | 2.15   | 0.98  | 3.13            | 2.47   | 1.16  | 3.63            | 2.77                        | 0.94  | 3.71            | 1.33   | 2.11  | 3.44            | 0.37   | 1.28  | 1.65            |

| North Field 2 | 0.71  | 0.34  | 1.05  | 0.86  | 0.50  | 1.36  | 1.08  | 0.31  | 1.39  | 0.38 | 1.03  | 1.41  | 0.17 | 0.18  | 0.35  |
|---------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|-------|-------|------|-------|-------|
| North Field 1 | 0.53  | 0.22  | 0.76  | 0.49  | 0.41  | 0.90  | 0.35  | 0.14  | 0.49  | 0.07 | 0.40  | 0.47  | 0.05 | 0.10  | 0.15  |
| North Hill 1  | 0.95  | 0.62  | 1.57  | 1.15  | 0.12  | 1.26  | 0.91  | 0.09  | 1.00  | 0.25 | 0.79  | 1.04  | 0.13 | 0.31  | 0.44  |
| NW Clearing 4 | 0.08  | 0.12  | 0.20  | 0.13  | 0.01  | 0.14  | 0.03  | 0.03  | 0.07  | 0.01 | 0.14  | 0.15  | 0.01 | 0.00  | 0.01  |
| NW Clearing 2 | 0.11  | 0.11  | 0.21  | 0.12  | 0.07  | 0.19  | 0.21  | 0.01  | 0.23  | 0.09 | 0.07  | 0.15  | 0.07 | 0.00  | 0.07  |
| All Zones     | 19.08 | 24.93 | 44.00 | 21.04 | 21.43 | 42.47 | 26.41 | 17.48 | 43.89 | 9.90 | 38.86 | 48.77 | 8.32 | 13.54 | 21.87 |

# APPENDIX G: CANOPY COVER ESTIMATES IN PERCENT COVER FOR UNITS WITHIN THE SECOND SITE IN THE SHIAWASSEE RIVER HEADWATERS STUDY REGION FROM 2011-2023. (NOTE: CELLS HIGHLIGHTED IN RED INDICATE UNITS WITH CANOPY ESTIMATES GREATER THAN 50% AND POTENTIAL AREAS FOR HABITAT MANAGEMENT FOR EASTERN MASSASAUGAS.)

|                  |        |       |                 |        |       |                 | Canopy Cover – Percent Cover |       |                 |        |       |                 |        |       |                   |
|------------------|--------|-------|-----------------|--------|-------|-----------------|------------------------------|-------|-----------------|--------|-------|-----------------|--------|-------|-------------------|
|                  |        | 2023  |                 |        | 2022  |                 |                              | 2017  |                 |        | 2012  |                 |        | 2011  |                   |
| Unit Name        | Forest | Shrub | Canopy<br>Total | Forest | Shrub | Canopy<br>Total | Forest                       | Shrub | Canopy<br>Total | Forest | Shrub | Canopy<br>Total | Forest | Shrub | Canopy<br>Total   |
| outh             | 15.8   | 29.4  | 45.1            | 26.4   | 18.4  | 44.8            | 45.8                         | 6.6   | 52.5            | 21.2   | 27.2  | 48.5            | 24.9   | 8.4   | 33.3              |
| South            | 0.3    | 14.4  | 14.7            | 4.4    | 4.8   | 9.2             | 0.4                          | 6.3   | 6.7             | 0.1    | 24.9  | 25.0            | 0.1    | 7.4   | 7.5               |
| North            | 5.0    | 6.7   | 11.7            | 4.7    | 11.8  | 16.5            | 2.8                          | 7.1   | 9.9             | 0.6    | 25.2  | 25.8            | 0.1    | 7.4   | 7.6               |
| North            | 17.4   | 20.6  | 38.0            | 10.5   | 18.4  | 28.8            | 7.8                          | 9.2   | 17.0            | 1.6    | 27.1  | 28.6            | 2.9    | 15.2  | 18.1              |
| North            | 8.5    | 8.7   | 17.2            | 5.2    | 13.5  | 18.7            | 26.4                         | 22.7  | 49.0            | 2.1    | 31.6  | 33.7            | 2.5    | 9.4   | 12.0              |
| Additional       | 2.1    | 6.9   | 9.1             | 3.1    | 5.7   | 8.8             | 1.2                          | 29.7  | 30.9            | 0.2    | 35.5  | 35.7            | 1.2    | 13.3  | 14.5              |
| Old Field Upland | 14.3   | 8.5   | 22.8            | 15.7   | 16.2  | 31.9            | 32.4                         | 7.8   | 40.2            | 8.5    | 22.4  | 30.9            | 7.8    | 0.7   | <mark>8.</mark> 5 |
| NW<br>Burn Unit  | 11.0   | 12.7  | 23.7            | 8.4    | 12.8  | 21.2            | 8.3                          | 5.7   | 14.0            | 4.8    | 11.5  | 16.4            | 2.1    | 4.1   | 6.2               |
| SW<br>Mgmt Unit  | 17.0   | 15.3  | 32.3            | 21.6   | 8.6   | 30.2            | 21.9                         | 3.7   | 25.6            | 15.8   | 12.2  | 27.9            | 16.7   | 1.2   | 17.9              |
| Pvt              | 2.8    | 29.0  | 31.8            | 5.0    | 17.4  | 22.4            | 3.0                          | 10.1  | 13.1            | 0.7    | 26.3  | 27.0            | 0.4    | 12.5  | 12.9              |
| Center<br>Main   | 2.6    | 7.0   | 9.6             | 3.5    | 4.4   | 7.9             | 8.5                          | 0.5   | 9.0             | 1.0    | 2.9   | 3.9             | 1.1    | 4.7   | 5.8               |
| Center SW        | 1.7    | 6.4   | 8.0             | 0.5    | 1.8   | 2.3             | 14.9                         | 15.2  | 30.1            | 0.0    | 1.0   | 1.0             | 0.2    | 1.9   | 2.1               |
| Center SE        | 1.3    | 3.6   | 4.9             | 3.4    | 6.4   | 9.9             | 2.4                          | 2.1   | 4.5             | 0.0    | 0.8   | 0.8             | 0.0    | 1.3   | 1.3               |
| Center N         | 11.8   | 14.1  | 25.9            | 17.0   | 7.1   | 24.2            | 14.2                         | 8.6   | 22.7            | 0.7    | 15.7  | 16.4            | 3.8    | 0.8   | 4.6               |
| Center W         | 21.2   | 7.0   | 28.2            | 21.4   | 14.2  | 35.6            | 28.2                         | 1.1   | 29.3            | 0.0    | 21.7  | 21.7            | 4.4    | 1.1   | 5.5               |

| Cut Field North | 10.0 | 13.9 | 23.9 | 13.6 | 5.3  | 18.9 | 13.5 | 5.9  | 19.4 | 3.0  | 30.4 | 33.4 | 2.4  | 9.6  | 12.0 |
|-----------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| North Field 3   | 27.9 | 12.7 | 40.7 | 32.1 | 15.1 | 47.2 | 36.1 | 12.2 | 48.3 | 17.4 | 27.5 | 44.8 | 4.8  | 16.6 | 21.4 |
| North Field 2   | 17.0 | 8.1  | 25.1 | 20.4 | 11.9 | 32.3 | 25.7 | 7.3  | 33.0 | 9.1  | 24.6 | 33.7 | 4.1  | 4.2  | 8.3  |
| North Field 1   | 16.4 | 6.9  | 23.3 | 15.0 | 12.7 | 27.7 | 10.8 | 4.3  | 15.1 | 2.3  | 12.3 | 14.6 | 1.5  | 3.1  | 4.6  |
| North Hill 1    | 23.4 | 15.4 | 38.8 | 28.3 | 2.9  | 31.2 | 22.5 | 2.1  | 24.6 | 6.1  | 19.5 | 25.6 | 3.1  | 7.6  | 10.8 |
| NW Clearing 4   | 23.0 | 32.8 | 55.8 | 35.8 | 2.7  | 38.5 | 9.5  | 9.3  | 18.8 | 4.2  | 38.4 | 42.6 | 3.6  | 0.0  | 3.6  |
| NW Clearing 2   | 17.4 | 17.3 | 34.7 | 19.4 | 10.9 | 30.3 | 34.9 | 2.3  | 37.2 | 13.9 | 10.8 | 24.7 | 11.6 | 0.0  | 11.6 |
| All Zones       | 9.6  | 12.6 | 22.3 | 10.6 | 10.8 | 21.5 | 13.4 | 8.8  | 22.2 | 5.0  | 19.7 | 24.7 | 4.2  | 6.8  | 11.1 |

APPENDIX H: CANOPY COVER ESTIMATES (AREA AND PERCENT COVER) FOR EASTERN MASSASAUGA (EMR) ELEMENT OCCURRENCES (EOS) IN THE SHIAWASSEE STUDY REGION FOR 2011. (NOTE: EO\_ID SPLIT INDICATES INDIVIDUAL SOURCE FEATURES/LOCATIONS THAT COMPRISE EACH EO. CELLS HIGHLIGHTED IN RED INDICATE AREAS WITH CANOPY ESTIMATES GREATER THAN 50% AND POTENTIAL AREAS FOR HABITAT MANAGEMENT FOR EMRS.)

|                |                |               |                 | 2011             |                            |                           |                                |
|----------------|----------------|---------------|-----------------|------------------|----------------------------|---------------------------|--------------------------------|
| EO_ID<br>split | Forest<br>(m²) | Shrub<br>(m²) | Total<br>Canopy | Total EO<br>Area | Percent<br>Cover<br>Forest | Percent<br>Cover<br>Shrub | Percent<br>Cover All<br>Canopy |
| 19055_2        | 0              | 1132          | 1132            | 1953             | 0.00%                      | 57.96%                    | 57.96%                         |
| 3130_2         | 0              | 1708          | 1708            | 3659             | 0.00%                      | 46.68%                    | 46.68%                         |
| 3130_11        | 84             | 724           | 808             | 1953             | 4.30%                      | 37.07%                    | 41.37%                         |
| 10511_1        | 2124           | 912           | 3036            | 7811             | 27.19%                     | 11.68%                    | 38.87%                         |
| 6223_19        | 24             | 704           | 728             | 1953             | 1.23%                      | 36.05%                    | 37.28%                         |
| 6223_8         | 0              | 612           | 612             | 1953             | 0.00%                      | 31.34%                    | 31.34%                         |
| 3130_9         | 0              | 556           | 556             | 1953             | 0.00%                      | 28.47%                    | 28.47%                         |
| 3130_5         | 0              | 520           | 520             | 1953             | 0.00%                      | 26.63%                    | 26.63%                         |
| 3130_15        | 64             | 504           | 568             | 2186             | 2.93%                      | 23.06%                    | 25.98%                         |
| 3130_10        | 364            | 104           | 468             | 1953             | 18.64%                     | 5.33%                     | 23.96%                         |
| 3130_4         | 292            | 164           | 456             | 1953             | 14.95%                     | 8.40%                     | 23.35%                         |
| 20057_2        | 428            | 4             | 432             | 1953             | 21.92%                     | 0.20%                     | 22.12%                         |
| 3130_19        | 344            | 80            | 424             | 1953             | 17.61%                     | 4.10%                     | 21.71%                         |
| 3130_17        | 0              | 420           | 420             | 1953             | 0.00%                      | 21.51%                    | 21.51%                         |
| 6223_5         | 16             | 344           | 360             | 1953             | 0.82%                      | 17.61%                    | 18.43%                         |
| 20057_1        | 52724          | 13332         | 66056           | 365048           | 14.44%                     | 3.65%                     | 18.10%                         |
| 6223_10        | 204            | 140           | 344             | 1953             | 10.45%                     | 7.17%                     | 17.61%                         |
| 3130_12        | 252            | 376           | 628             | 3868             | 6.51%                      | 9.72%                     | 16.24%                         |
| 3130_18        | 40             | 228           | 268             | 1953             | 2.05%                      | 11.67%                    | 13.72%                         |
| 6223_12        | 0              | 724           | 724             | 5302             | 0.00%                      | 13.66%                    | 13.66%                         |
| 6223_14        | 4              | 516           | 520             | 3903             | 0.10%                      | 13.22%                    | 13.32%                         |
| 6223_3         | 5484           | 8740          | 14224           | 125279           | 4.38%                      | 6.98%                     | 11.35%                         |
| 6223_11        | 52             | 160           | 212             | 1953             | 2.66%                      | 8.19%                     | 10.86%                         |
| 11371_2        | 0              | 20            | 20              | 214              | 0.00%                      | 9.35%                     | 9.35%                          |
| 19055_4        | 2172           | 744           | 2916            | 33134            | 6.56%                      | 2.25%                     | 8.80%                          |
| 5567_22        | 17744          | 7332          | 25076           | 456382           | 3.89%                      | 1.61%                     | 5.49%                          |
| 3130_7         | 0              | 100           | 100             | 1953             | 0.00%                      | 5.12%                     | 5.12%                          |
| 3130_6         | 272            | 1240          | 1512            | 32487            | 0.84%                      | 3.82%                     | 4.65%                          |
| 3130_8         | 0              | 80            | 80              | 1953             | 0.00%                      | 4.10%                     | 4.10%                          |
| 6223_18        | 44             | 36            | 80              | 1953             | 2.25%                      | 1.84%                     | 4.10%                          |

| 19055_3 | 3112 | 60  | 3172 | 85912   | 3.62% | 0.07% | 3.69% |
|---------|------|-----|------|---------|-------|-------|-------|
| 3130_3  | 0    | 152 | 152  | 4665    | 0.00% | 3.26% | 3.26% |
| 6223_16 | 16   | 44  | 60   | 1953    | 0.82% | 2.25% | 3.07% |
| 5567_21 | 52   | 4   | 56   | 1953    | 2.66% | 0.20% | 2.87% |
| 3130_1  | 0    | 16  | 16   | 589     | 0.00% | 2.72% | 2.72% |
| 6223_9  | 0    | 52  | 52   | 1953    | 0.00% | 2.66% | 2.66% |
| 3130_20 | 16   | 80  | 96   | 3620    | 0.44% | 2.21% | 2.65% |
| 6223_21 | 660  | 260 | 920  | 35326   | 1.87% | 0.74% | 2.60% |
| 6223_4  | 0    | 12  | 12   | 1146    | 0.00% | 1.05% | 1.05% |
| 6223_6  | 0    | 20  | 20   | 1953    | 0.00% | 1.02% | 1.02% |
| 6223_17 | 0    | 84  | 84   | 9421    | 0.00% | 0.89% | 0.89% |
| 1422    | 0    | 0   | 0    | 8351493 | 0.00% | 0.00% | 0.00% |
| 1419    | 0    | 0   | 0    | 1436848 | 0.00% | 0.00% | 0.00% |
| 3130_13 | 0    | 0   | 0    | 1953    | 0.00% | 0.00% | 0.00% |
| 3130_14 | 0    | 0   | 0    | 873     | 0.00% | 0.00% | 0.00% |
| 3130_16 | 0    | 0   | 0    | 5172    | 0.00% | 0.00% | 0.00% |
| 6223_1  | 0    | 0   | 0    | 1953    | 0.00% | 0.00% | 0.00% |
| 6223_2  | 0    | 0   | 0    | 1953    | 0.00% | 0.00% | 0.00% |
| 6223_7  | 0    | 0   | 0    | 1953    | 0.00% | 0.00% | 0.00% |
| 6223_13 | 0    | 0   | 0    | 63      | 0.00% | 0.00% | 0.00% |
| 6223_15 | 0    | 0   | 0    | 1953    | 0.00% | 0.00% | 0.00% |
| 6223_20 | 0    | 0   | 0    | 1953    | 0.00% | 0.00% | 0.00% |
| 6223_22 | 0    | 0   | 0    | 2630    | 0.00% | 0.00% | 0.00% |
| 6223_23 | 0    | 0   | 0    | 1953    | 0.00% | 0.00% | 0.00% |
| 6223_24 | 0    | 0   | 0    | 40613   | 0.00% | 0.00% | 0.00% |
| 7670_1  | 0    | 0   | 0    | 1953    | 0.00% | 0.00% | 0.00% |
| 7670_2  | 0    | 0   | 0    | 31248   | 0.00% | 0.00% | 0.00% |
| 11364_1 | 0    | 0   | 0    | 1953    | 0.00% | 0.00% | 0.00% |
| 11364_2 | 0    | 0   | 0    | 1953    | 0.00% | 0.00% | 0.00% |
| 11364_3 | 0    | 0   | 0    | 178     | 0.00% | 0.00% | 0.00% |
| 11364_4 | 0    | 0   | 0    | 7513    | 0.00% | 0.00% | 0.00% |
| 11364_5 | 0    | 0   | 0    | 7811    | 0.00% | 0.00% | 0.00% |
| 11364_6 | 0    | 0   | 0    | 1953    | 0.00% | 0.00% | 0.00% |
| 11364_7 | 0    | 0   | 0    | 93732   | 0.00% | 0.00% | 0.00% |
| 11364_8 | 0    | 0   | 0    | 111572  | 0.00% | 0.00% | 0.00% |
| 19055_1 | 0    | 0   | 0    | 1953    | 0.00% | 0.00% | 0.00% |
| 19055_5 | 0    | 0   | 0    | 1953    | 0.00% | 0.00% | 0.00% |
| 10511_2 | 0    | 0   | 0    | 1953    | 0.00% | 0.00% | 0.00% |
| 10511_3 | 0    | 0   | 0    | 30692   | 0.00% | 0.00% | 0.00% |
| 10511_4 | 0    | 0   | 0    | 1953    | 0.00% | 0.00% | 0.00% |
| 10511_5 | 0    | 0   | 0    | 2879    | 0.00% | 0.00% | 0.00% |

| 10511_6  | 0 | 0 | 0 | 1953    | 0.00% | 0.00% | 0.00% |
|----------|---|---|---|---------|-------|-------|-------|
| 10511_7  | 0 | 0 | 0 | 1953    | 0.00% | 0.00% | 0.00% |
| 10511_8  | 0 | 0 | 0 | 31245   | 0.00% | 0.00% | 0.00% |
| 10511_9  | 0 | 0 | 0 | 7811    | 0.00% | 0.00% | 0.00% |
| 10511_10 | 0 | 0 | 0 | 1953    | 0.00% | 0.00% | 0.00% |
| 10511_11 | 0 | 0 | 0 | 31247   | 0.00% | 0.00% | 0.00% |
| 10511_12 | 0 | 0 | 0 | 1953    | 0.00% | 0.00% | 0.00% |
| 10511_13 | 0 | 0 | 0 | 1953    | 0.00% | 0.00% | 0.00% |
| 11371_1  | 0 | 0 | 0 | 399     | 0.00% | 0.00% | 0.00% |
| 11371_3  | 0 | 0 | 0 | 1160194 | 0.00% | 0.00% | 0.00% |

APPENDIX I: CANOPY COVER ESTIMATES (AREA AND PERCENT COVER) FOR EASTERN MASSASAUGA (EMR) ELEMENT OCCURRENCES (EOS) IN THE SHIAWASSEE STUDY REGION FOR 2012. (NOTE: EO\_ID SPLIT INDICATES INDIVIDUAL SOURCE FEATURES/LOCATIONS THAT COMPRISE EACH EO. CELLS HIGHLIGHTED IN RED INDICATE AREAS WITH CANOPY ESTIMATES GREATER THAN 50% AND POTENTIAL AREAS FOR HABITAT MANAGEMENT FOR EMRS.)

|                |                |               |                 | 2012             |                            |                           |                                |
|----------------|----------------|---------------|-----------------|------------------|----------------------------|---------------------------|--------------------------------|
| EO_ID<br>split | Forest<br>(m²) | Shrub<br>(m²) | Total<br>Canopy | Total EO<br>Area | Percent<br>Cover<br>Forest | Percent<br>Cover<br>Shrub | Percent<br>Cover All<br>Canopy |
| 11364_6        | 1892           | 20            | 1912            | 1953             | 96.88%                     | 1.02%                     | 97.90%                         |
| 6223_19        | 0              | 1696          | 1696            | 1953             | 0.00%                      | 86.84%                    | 86.84%                         |
| 3130_17        | 200            | 1440          | 1640            | 1953             | 10.24%                     | 73.73%                    | 83.97%                         |
| 10511_2        | 1164           | 364           | 1528            | 1953             | 59.60%                     | 18.64%                    | 78.24%                         |
| 10511_12       | 660            | 720           | 1380            | 1953             | 33.79%                     | 36.87%                    | 70.66%                         |
| 6223_10        | 0              | 1200          | 1200            | 1953             | 0.00%                      | 61.44%                    | 61.44%                         |
| 19055_2        | 0              | 1184          | 1184            | 1953             | 0.00%                      | 60.62%                    | 60.62%                         |
| 10511_6        | 944            | 184           | 1128            | 1953             | 48.34%                     | 9.42%                     | 57.76%                         |
| 3130_11        | 104            | 992           | 1096            | 1953             | 5.33%                      | 50.79%                    | 56.12%                         |
| 6223_14        | 0              | 1912          | 1912            | 3903             | 0.00%                      | 48.99%                    | 48.99%                         |
| 10511_1        | 1948           | 1876          | 3824            | 7811             | 24.94%                     | 24.02%                    | 48.96%                         |
| 3130_10        | 796            | 120           | 916             | 1953             | 40.76%                     | 6.14%                     | 46.90%                         |
| 11364_7        | 22664          | 17632         | 40296           | 93732            | 24.18%                     | 18.81%                    | 42.99%                         |
| 6223_18        | 552            | 280           | 832             | 1953             | 28.26%                     | 14.34%                    | 42.60%                         |
| 3130_19        | 652            | 140           | 792             | 1953             | 33.38%                     | 7.17%                     | 40.55%                         |
| 6223_5         | 116            | 664           | 780             | 1953             | 5.94%                      | 34.00%                    | 39.94%                         |
| 3130_9         | 488            | 284           | 772             | 1953             | 24.99%                     | 14.54%                    | 39.53%                         |
| 3130_12        | 1316           | 204           | 1520            | 3868             | 34.02%                     | 5.27%                     | 39.30%                         |
| 6223_7         | 0              | 724           | 724             | 1953             | 0.00%                      | 37.07%                    | 37.07%                         |
| 20057_2        | 548            | 164           | 712             | 1953             | 28.06%                     | 8.40%                     | 36.46%                         |
| 3130_2         | 1148           | 172           | 1320            | 3659             | 31.37%                     | 4.70%                     | 36.08%                         |
| 3130_4         | 320            | 348           | 668             | 1953             | 16.39%                     | 17.82%                    | 34.20%                         |
| 7670_1         | 600            | 68            | 668             | 1953             | 30.72%                     | 3.48%                     | 34.20%                         |
| 11364_3        | 40             | 20            | 60              | 178              | 22.47%                     | 11.24%                    | 33.71%                         |
| 10511_8        | 7040           | 3404          | 10444           | 31245            | 22.53%                     | 10.89%                    | 33.43%                         |
| 7670_2         | 6224           | 4100          | 10324           | 31248            | 19.92%                     | 13.12%                    | 33.04%                         |
| 6223_6         | 0              | 636           | 636             | 1953             | 0.00%                      | 32.57%                    | 32.57%                         |
| 20057_1        | 51708          | 66408         | 118116          | 365048           | 14.16%                     | 18.19%                    | 32.36%                         |
| 10511_4        | 8              | 608           | 616             | 1953             | 0.41%                      | 31.13%                    | 31.54%                         |

| 6223_8   | 0       | 592    | 592     | 1953    | 0.00%  | 30.31% | 30.31% |
|----------|---------|--------|---------|---------|--------|--------|--------|
| 11371_2  | 0       | 64     | 64      | 214     | 0.00%  | 29.91% | 29.91% |
| 11364_2  | 572     | 8      | 580     | 1953    | 29.29% | 0.41%  | 29.70% |
| 10511_3  | 4984    | 3940   | 8924    | 30692   | 16.24% | 12.84% | 29.08% |
| 11364_8  | 28776   | 3512   | 32288   | 111572  | 25.79% | 3.15%  | 28.94% |
| 10511_11 | 1860    | 6540   | 8400    | 31247   | 5.95%  | 20.93% | 26.88% |
| 3130_18  | 204     | 320    | 524     | 1953    | 10.45% | 16.39% | 26.83% |
| 11371_3  | 173296  | 128128 | 301424  | 1160194 | 14.94% | 11.04% | 25.98% |
| 6223_12  | 0       | 1284   | 1284    | 5302    | 0.00%  | 24.22% | 24.22% |
| 6223_22  | 164     | 464    | 628     | 2630    | 6.24%  | 17.64% | 23.88% |
| 6223_11  | 0       | 464    | 464     | 1953    | 0.00%  | 23.76% | 23.76% |
| 3130_5   | 312     | 148    | 460     | 1953    | 15.98% | 7.58%  | 23.55% |
| 10511_5  | 576     | 88     | 664     | 2879    | 20.01% | 3.06%  | 23.06% |
| 1422     | 1363256 | 325260 | 1688516 | 8351493 | 16.32% | 3.89%  | 20.22% |
| 3130_15  | 132     | 304    | 436     | 2186    | 6.04%  | 13.91% | 19.95% |
| 11364_1  | 132     | 256    | 388     | 1953    | 6.76%  | 13.11% | 19.87% |
| 19055_4  | 2104    | 4164   | 6268    | 33134   | 6.35%  | 12.57% | 18.92% |
| 6223_4   | 0       | 216    | 216     | 1146    | 0.00%  | 18.85% | 18.85% |
| 6223_21  | 1120    | 5480   | 6600    | 35326   | 3.17%  | 15.51% | 18.68% |
| 6223_17  | 32      | 1652   | 1684    | 9421    | 0.34%  | 17.54% | 17.87% |
| 6223_24  | 692     | 6464   | 7156    | 40613   | 1.70%  | 15.92% | 17.62% |
| 6223_16  | 332     | 12     | 344     | 1953    | 17.00% | 0.61%  | 17.61% |
| 6223_3   | 4028    | 16380  | 20408   | 125279  | 3.22%  | 13.07% | 16.29% |
| 11364_5  | 1220    | 28     | 1248    | 7811    | 15.62% | 0.36%  | 15.98% |
| 11364_4  | 608     | 344    | 952     | 7513    | 8.09%  | 4.58%  | 12.67% |
| 1419     | 92740   | 81408  | 174148  | 1436848 | 6.45%  | 5.67%  | 12.12% |
| 10511_13 | 32      | 184    | 216     | 1953    | 1.64%  | 9.42%  | 11.06% |
| 3130_3   | 20      | 480    | 500     | 4665    | 0.43%  | 10.29% | 10.72% |
| 19055_1  | 0       | 208    | 208     | 1953    | 0.00%  | 10.65% | 10.65% |
| 19055_3  | 2848    | 4332   | 7180    | 85912   | 3.32%  | 5.04%  | 8.36%  |
| 5567_22  | 9824    | 26136  | 35960   | 456382  | 2.15%  | 5.73%  | 7.88%  |
| 3130_6   | 1088    | 1032   | 2120    | 32487   | 3.35%  | 3.18%  | 6.53%  |
| 3130_20  | 0       | 184    | 184     | 3620    | 0.00%  | 5.08%  | 5.08%  |
| 3130_1   | 4       | 24     | 28      | 589     | 0.68%  | 4.07%  | 4.75%  |
| 3130_7   | 80      | 0      | 80      | 1953    | 4.10%  | 0.00%  | 4.10%  |
| 10511_7  | 8       | 64     | 72      | 1953    | 0.41%  | 3.28%  | 3.69%  |
| 11371_1  | 0       | 12     | 12      | 399     | 0.00%  | 3.01%  | 3.01%  |
| 5567_21  | 56      | 0      | 56      | 1953    | 2.87%  | 0.00%  | 2.87%  |
| 6223_9   | 0       | 32     | 32      | 1953    | 0.00%  | 1.64%  | 1.64%  |
| 6223_23  | 0       | 32     | 32      | 1953    | 0.00%  | 1.64%  | 1.64%  |
| 6223_15  | 0       | 20     | 20      | 1953    | 0.00%  | 1.02%  | 1.02%  |

| 3130_8   | 0 | 0 | 0 | 1953 | 0.00% | 0.00% | 0.00% |
|----------|---|---|---|------|-------|-------|-------|
| 3130_13  | 0 | 0 | 0 | 1953 | 0.00% | 0.00% | 0.00% |
| 3130_14  | 0 | 0 | 0 | 873  | 0.00% | 0.00% | 0.00% |
| 3130_16  | 0 | 0 | 0 | 5172 | 0.00% | 0.00% | 0.00% |
| 6223_1   | 0 | 0 | 0 | 1953 | 0.00% | 0.00% | 0.00% |
| 6223_2   | 0 | 0 | 0 | 1953 | 0.00% | 0.00% | 0.00% |
| 6223_13  | 0 | 0 | 0 | 63   | 0.00% | 0.00% | 0.00% |
| 6223_20  | 0 | 0 | 0 | 1953 | 0.00% | 0.00% | 0.00% |
| 19055_5  | 0 | 0 | 0 | 1953 | 0.00% | 0.00% | 0.00% |
| 10511_9  | 0 | 0 | 0 | 7811 | 0.00% | 0.00% | 0.00% |
| 10511_10 | 0 | 0 | 0 | 1953 | 0.00% | 0.00% | 0.00% |

APPENDIX J: CANOPY COVER ESTIMATES (AREA AND PERCENT COVER) FOR EASTERN MASSASAUGA (EMR) ELEMENT OCCURRENCES (EOS) IN THE SHIAWASSEE STUDY REGION FOR 2017. (NOTE: EO\_ID SPLIT INDICATES INDIVIDUAL SOURCE FEATURES/LOCATIONS THAT COMPRISE EACH EO. CELLS HIGHLIGHTED IN RED INDICATE AREAS WITH CANOPY ESTIMATES GREATER THAN 50% AND POTENTIAL AREAS FOR HABITAT MANAGEMENT FOR EMRS.)

| 2017           |                |               |                 |                  |                            |                           |                                |  |  |  |
|----------------|----------------|---------------|-----------------|------------------|----------------------------|---------------------------|--------------------------------|--|--|--|
| EO_ID<br>split | Forest<br>(m²) | Shrub<br>(m²) | Total<br>Canopy | Total EO<br>Area | Percent<br>Cover<br>Forest | Percent<br>Cover<br>Shrub | Percent<br>Cover All<br>Canopy |  |  |  |
| 11364_6        | 1684           | 116           | 1800            | 1953             | 86.23%                     | 5.94%                     | 92.17%                         |  |  |  |
| 6223_19        | 24             | 1716          | 1740            | 1953             | 1.23%                      | 87.86%                    | 89.09%                         |  |  |  |
| 10511_6        | 1416           | 12            | 1428            | 1953             | 72.50%                     | 0.61%                     | 73.12%                         |  |  |  |
| 3130_10        | 1352           | 28            | 1380            | 1953             | 69.23%                     | 1.43%                     | 70.66%                         |  |  |  |
| 10511_2        | 1076           | 288           | 1364            | 1953             | 55.09%                     | 14.75%                    | 69.84%                         |  |  |  |
| 3130_17        | 76             | 1188          | 1264            | 1953             | 3.89%                      | 60.83%                    | 64.72%                         |  |  |  |
| 3130_11        | 560            | 520           | 1080            | 1953             | 28.67%                     | 26.63%                    | 55.30%                         |  |  |  |
| 11364_2        | 972            | 60            | 1032            | 1953             | 49.77%                     | 3.07%                     | 52.84%                         |  |  |  |
| 7670_1         | 600            | 336           | 936             | 1953             | 30.72%                     | 17.20%                    | 47.93%                         |  |  |  |
| 6223_18        | 856            | 56            | 912             | 1953             | 43.83%                     | 2.87%                     | 46.70%                         |  |  |  |
| 10511_1        | 2316           | 1076          | 3392            | 7811             | 29.65%                     | 13.78%                    | 43.43%                         |  |  |  |
| 6223_10        | 264            | 520           | 784             | 1953             | 13.52%                     | 26.63%                    | 40.14%                         |  |  |  |
| 10511_12       | 428            | 272           | 700             | 1953             | 21.92%                     | 13.93%                    | 35.84%                         |  |  |  |
| 3130_12        | 1316           | 40            | 1356            | 3868             | 34.02%                     | 1.03%                     | 35.06%                         |  |  |  |
| 10511_8        | 7796           | 2752          | 10548           | 31245            | 24.95%                     | 8.81%                     | 33.76%                         |  |  |  |
| 11364_7        | 8820           | 22400         | 31220           | 93732            | 9.41%                      | 23.90%                    | 33.31%                         |  |  |  |
| 20057_1        | 57960          | 57028         | 114988          | 365048           | 15.88%                     | 15.62%                    | 31.50%                         |  |  |  |
| 6223_5         | 420            | 184           | 604             | 1953             | 21.51%                     | 9.42%                     | 30.93%                         |  |  |  |
| 20057_2        | 492            | 112           | 604             | 1953             | 25.19%                     | 5.73%                     | 30.93%                         |  |  |  |
| 3130_15        | 620            | 36            | 656             | 2186             | 28.36%                     | 1.65%                     | 30.01%                         |  |  |  |
| 7670_2         | 2892           | 6080          | 8972            | 31248            | 9.25%                      | 19.46%                    | 28.71%                         |  |  |  |
| 3130_18        | 320            | 180           | 500             | 1953             | 16.39%                     | 9.22%                     | 25.60%                         |  |  |  |
| 3130_19        | 496            | 4             | 500             | 1953             | 25.40%                     | 0.20%                     | 25.60%                         |  |  |  |
| 3130_9         | 348            | 144           | 492             | 1953             | 17.82%                     | 7.37%                     | 25.19%                         |  |  |  |
| 11364_3        | 44             | 0             | 44              | 178              | 24.72%                     | 0.00%                     | 24.72%                         |  |  |  |
| 11364_8        | 14416          | 13040         | 27456           | 111572           | 12.92%                     | 11.69%                    | 24.61%                         |  |  |  |
| 3130_5         | 0              | 480           | 480             | 1953             | 0.00%                      | 24.58%                    | 24.58%                         |  |  |  |
| 6223_3         | 23364          | 6800          | 30164           | 125279           | 18.65%                     | 5.43%                     | 24.08%                         |  |  |  |
| 10511_3        | 5232           | 2156          | 7388            | 30692            | 17.05%                     | 7.02%                     | 24.07%                         |  |  |  |

| 6223_22  | 132     | 500    | 632     | 2630    | 5.02%  | 19.01% | 24.03% |
|----------|---------|--------|---------|---------|--------|--------|--------|
| 3130_4   | 260     | 136    | 396     | 1953    | 13.31% | 6.96%  | 20.28% |
| 6223_16  | 356     | 0      | 356     | 1953    | 18.23% | 0.00%  | 18.23% |
| 11371_3  | 143624  | 48548  | 192172  | 1160194 | 12.38% | 4.18%  | 16.56% |
| 1422     | 1115120 | 153900 | 1269020 | 8351493 | 13.35% | 1.84%  | 15.20% |
| 11364_5  | 392     | 772    | 1164    | 7811    | 5.02%  | 9.88%  | 14.90% |
| 19055_4  | 3056    | 1860   | 4916    | 33134   | 9.22%  | 5.61%  | 14.84% |
| 6223_21  | 1320    | 3760   | 5080    | 35326   | 3.74%  | 10.64% | 14.38% |
| 3130_2   | 24      | 484    | 508     | 3659    | 0.66%  | 13.23% | 13.88% |
| 6223_24  | 2156    | 3460   | 5616    | 40613   | 5.31%  | 8.52%  | 13.83% |
| 10511_11 | 1444    | 2264   | 3708    | 31247   | 4.62%  | 7.25%  | 11.87% |
| 10511_4  | 0       | 208    | 208     | 1953    | 0.00%  | 10.65% | 10.65% |
| 11364_1  | 0       | 188    | 188     | 1953    | 0.00%  | 9.63%  | 9.63%  |
| 3130_1   | 36      | 16     | 52      | 589     | 6.11%  | 2.72%  | 8.83%  |
| 1419     | 74656   | 47720  | 122376  | 1436848 | 5.20%  | 3.32%  | 8.52%  |
| 3130_6   | 2644    | 76     | 2720    | 32487   | 8.14%  | 0.23%  | 8.37%  |
| 6223_17  | 600     | 184    | 784     | 9421    | 6.37%  | 1.95%  | 8.32%  |
| 5567_22  | 15992   | 21864  | 37856   | 456382  | 3.50%  | 4.79%  | 8.29%  |
| 6223_8   | 116     | 44     | 160     | 1953    | 5.94%  | 2.25%  | 8.19%  |
| 3130_7   | 108     | 0      | 108     | 1953    | 5.53%  | 0.00%  | 5.53%  |
| 10511_7  | 96      | 12     | 108     | 1953    | 4.92%  | 0.61%  | 5.53%  |
| 19055_3  | 3040    | 1568   | 4608    | 85912   | 3.54%  | 1.83%  | 5.36%  |
| 3130_20  | 100     | 84     | 184     | 3620    | 2.76%  | 2.32%  | 5.08%  |
| 6223_4   | 0       | 56     | 56      | 1146    | 0.00%  | 4.89%  | 4.89%  |
| 6223_14  | 0       | 160    | 160     | 3903    | 0.00%  | 4.10%  | 4.10%  |
| 6223_23  | 0       | 68     | 68      | 1953    | 0.00%  | 3.48%  | 3.48%  |
| 6223_12  | 0       | 184    | 184     | 5302    | 0.00%  | 3.47%  | 3.47%  |
| 5567_21  | 56      | 0      | 56      | 1953    | 2.87%  | 0.00%  | 2.87%  |
| 3130_3   | 0       | 108    | 108     | 4665    | 0.00%  | 2.32%  | 2.32%  |
| 10511_13 | 40      | 4      | 44      | 1953    | 2.05%  | 0.20%  | 2.25%  |
| 11364_4  | 0       | 152    | 152     | 7513    | 0.00%  | 2.02%  | 2.02%  |
| 6223_1   | 24      | 12     | 36      | 1953    | 1.23%  | 0.61%  | 1.84%  |
| 6223_7   | 0       | 36     | 36      | 1953    | 0.00%  | 1.84%  | 1.84%  |
| 6223_15  | 8       | 0      | 8       | 1953    | 0.41%  | 0.00%  | 0.41%  |
| 19055_2  | 4       | 4      | 8       | 1953    | 0.20%  | 0.20%  | 0.41%  |
| 19055_1  | 4       | 0      | 4       | 1953    | 0.20%  | 0.00%  | 0.20%  |
| 3130_8   | 0       | 0      | 0       | 1953    | 0.00%  | 0.00%  | 0.00%  |
| 3130_13  | 0       | 0      | 0       | 1953    | 0.00%  | 0.00%  | 0.00%  |
| 3130_14  | 0       | 0      | 0       | 873     | 0.00%  | 0.00%  | 0.00%  |
| 3130_16  | 0       | 0      | 0       | 5172    | 0.00%  | 0.00%  | 0.00%  |
| 6223_2   | 0       | 0      | 0       | 1953    | 0.00%  | 0.00%  | 0.00%  |

| 6223_6   | 0 | 0 | 0 | 1953 | 0.00% | 0.00% | 0.00% |
|----------|---|---|---|------|-------|-------|-------|
| 6223_9   | 0 | 0 | 0 | 1953 | 0.00% | 0.00% | 0.00% |
| 6223_11  | 0 | 0 | 0 | 1953 | 0.00% | 0.00% | 0.00% |
| 6223_13  | 0 | 0 | 0 | 63   | 0.00% | 0.00% | 0.00% |
| 6223_20  | 0 | 0 | 0 | 1953 | 0.00% | 0.00% | 0.00% |
| 19055_5  | 0 | 0 | 0 | 1953 | 0.00% | 0.00% | 0.00% |
| 10511_5  | 0 | 0 | 0 | 2879 | 0.00% | 0.00% | 0.00% |
| 10511_9  | 0 | 0 | 0 | 7811 | 0.00% | 0.00% | 0.00% |
| 10511_10 | 0 | 0 | 0 | 1953 | 0.00% | 0.00% | 0.00% |
| 11371_1  | 0 | 0 | 0 | 399  | 0.00% | 0.00% | 0.00% |
| 11371_2  | 0 | 0 | 0 | 214  | 0.00% | 0.00% | 0.00% |

APPENDIX K: CANOPY COVER ESTIMATES (AREA AND PERCENT COVER) FOR EASTERN MASSASAUGA (EMR) ELEMENT OCCURRENCES (EOS) IN THE SHIAWASSEE STUDY REGION FOR 2022. (NOTE: EO\_ID SPLIT INDICATES INDIVIDUAL SOURCE FEATURES/LOCATIONS THAT COMPRISE EACH EO. CELLS HIGHLIGHTED IN RED INDICATE AREAS WITH CANOPY ESTIMATES GREATER THAN 50% AND POTENTIAL AREAS FOR HABITAT MANAGEMENT FOR EMRS.)

| 2022           |                |               |                 |                  |                            |                           |                                |  |  |  |
|----------------|----------------|---------------|-----------------|------------------|----------------------------|---------------------------|--------------------------------|--|--|--|
| EO_ID<br>split | Forest<br>(m²) | Shrub<br>(m²) | Total<br>Canopy | Total EO<br>Area | Percent<br>Cover<br>Forest | Percent<br>Cover<br>Shrub | Percent<br>Cover All<br>Canopy |  |  |  |
| 3130_11        | 917            | 795           | 1712            | 1953             | 46.97%                     | 40.68%                    | 87.66%                         |  |  |  |
| 3130_9         | 676            | 895           | 1571            | 1953             | 34.60%                     | 45.82%                    | 80.42%                         |  |  |  |
| 6223_19        | 2              | 1386          | 1388            | 1953             | 0.10%                      | 70.99%                    | 71.09%                         |  |  |  |
| 3130_2         | 424            | 1870          | 2294            | 3659             | 11.58%                     | 51.10%                    | 62.68%                         |  |  |  |
| 6223_18        | 948            | 258           | 1206            | 1953             | 48.55%                     | 13.21%                    | 61.76%                         |  |  |  |
| 10511_2        | 760            | 322           | 1081            | 1953             | 38.90%                     | 16.46%                    | 55.36%                         |  |  |  |
| 10511_1        | 694            | 3078          | 3772            | 7811             | 8.89%                      | 39.40%                    | 48.29%                         |  |  |  |
| 10511_12       | 770            | 166           | 936             | 1953             | 39.42%                     | 8.49%                     | 47.92%                         |  |  |  |
| 10511_6        | 788            | 119           | 907             | 1953             | 40.37%                     | 6.08%                     | 46.45%                         |  |  |  |
| 3130_5         | 78             | 784           | 862             | 1953             | 3.98%                      | 40.16%                    | 44.14%                         |  |  |  |
| 6223_10        | 180            | 575           | 756             | 1953             | 9.23%                      | 29.46%                    | 38.69%                         |  |  |  |
| 20057_2        | 471            | 258           | 729             | 1953             | 24.12%                     | 13.21%                    | 37.33%                         |  |  |  |
| 6223_22        | 641            | 319           | 960             | 2630             | 24.37%                     | 12.15%                    | 36.52%                         |  |  |  |
| 20057_1        | 91173          | 41101         | 132274          | 365048           | 24.98%                     | 11.26%                    | 36.23%                         |  |  |  |
| 6223 <u>6</u>  | 0              | 633           | 633             | 1953             | 0.00%                      | 32.40%                    | 32.40%                         |  |  |  |
| 19055_4        | 1833           | 7454          | 9287            | 33134            | 5.53%                      | 22.50%                    | 28.03%                         |  |  |  |
| 3130_4         | 401            | 139           | 541             | 1953             | 20.55%                     | 7.13%                     | 27.68%                         |  |  |  |
| 10511_8        | 5580           | 2955          | 8535            | 31245            | 17.86%                     | 9.46%                     | 27.32%                         |  |  |  |
| 11371_3        | 164443         | 134648        | 299090          | 1160194          | 14.17%                     | 11.61%                    | 25.78%                         |  |  |  |
| 6223_5         | 285            | 172           | 457             | 1953             | 14.57%                     | 8.81%                     | 23.38%                         |  |  |  |
| 10511_3        | 6475           | 694           | 7169            | 30692            | 21.10%                     | 2.26%                     | 23.36%                         |  |  |  |
| 11371_2        | 49             | 0             | 49              | 214              | 22.97%                     | 0.00%                     | 22.97%                         |  |  |  |
| 6223_3         | 18055          | 9078          | 27133           | 125279           | 14.41%                     | 7.25%                     | 21.66%                         |  |  |  |
| 6223_21        | 2605           | 4544          | 7149            | 35326            | 7.37%                      | 12.86%                    | 20.24%                         |  |  |  |
| 10511_11       | 4137           | 1884          | 6020            | 31247            | 13.24%                     | 6.03%                     | 19.27%                         |  |  |  |
| 6223_16        | 295            | 0             | 295             | 1953             | 15.10%                     | 0.00%                     | 15.10%                         |  |  |  |
| 6223_7         | 31             | 246           | 276             | 1953             | 1.57%                      | 12.58%                    | 14.16%                         |  |  |  |
| 19055_2        | 0              | 272           | 272             | 1953             | 0.00%                      | 13.95%                    | 13.95%                         |  |  |  |
| 10511_4        | 39             | 211           | 250             | 1953             | 1.99%                      | 10.80%                    | 12.79%                         |  |  |  |
| 10511_13       | 43             | 170           | 213             | 1953             | 2.20%                      | 8.70%                     | 10.90%                         |  |  |  |

| 6223_24 | 1644  | 2676 | 4321  | 40613   | 4.05% | 6.59% | 10.64% |
|---------|-------|------|-------|---------|-------|-------|--------|
| 5567_22 | 38527 | 9596 | 48123 | 456382  | 8.44% | 2.10% | 10.54% |
| 6223_17 | 584   | 332  | 915   | 9421    | 6.19% | 3.52% | 9.72%  |
| 3130_3  | 2     | 408  | 410   | 4665    | 0.04% | 8.74% | 8.78%  |
| 6223_11 | 4     | 143  | 147   | 1953    | 0.21% | 7.34% | 7.55%  |
| 19055_3 | 4597  | 1876 | 6473  | 85912   | 5.35% | 2.18% | 7.53%  |
| 11371_1 | 27    | 0    | 27    | 399     | 6.67% | 0.00% | 6.67%  |
| 6223_8  | 51    | 78   | 129   | 1953    | 2.62% | 3.98% | 6.61%  |
| 10511_7 | 74    | 35   | 109   | 1953    | 3.77% | 1.78% | 5.56%  |
| 10511_5 | 96    | 18   | 115   | 2879    | 3.34% | 0.64% | 3.98%  |
| 5567_21 | 61    | 14   | 76    | 1953    | 3.15% | 0.73% | 3.88%  |
| 6223_9  | 70    | 4    | 74    | 1953    | 3.57% | 0.21% | 3.77%  |
| 19055_1 | 0     | 61   | 61    | 1953    | 0.00% | 3.15% | 3.15%  |
| 6223_4  | 23    | 0    | 23    | 1146    | 1.97% | 0.00% | 1.97%  |
| 6223_12 | 51    | 14   | 66    | 5302    | 0.97% | 0.27% | 1.24%  |
| 6223_14 | 31    | 12   | 43    | 3903    | 0.79% | 0.31% | 1.10%  |
| 6223_1  | 8     | 0    | 8     | 1953    | 0.42% | 0.00% | 0.42%  |
| 6223_15 | 0     | 8    | 8     | 1953    | 0.00% | 0.42% | 0.42%  |
| 6223_23 | 0     | 6    | 6     | 1953    | 0.00% | 0.31% | 0.31%  |
| 1422    | 0     | 0    | 0     | 8351493 | 0.00% | 0.00% | 0.00%  |
| 1419    | 0     | 0    | 0     | 1436848 | 0.00% | 0.00% | 0.00%  |
| 3130_1  | 0     | 0    | 0     | 589     | 0.00% | 0.00% | 0.00%  |
| 3130_6  | 0     | 0    | 0     | 32487   | 0.00% | 0.00% | 0.00%  |
| 3130_7  | 0     | 0    | 0     | 1953    | 0.00% | 0.00% | 0.00%  |
| 3130_8  | 0     | 0    | 0     | 1953    | 0.00% | 0.00% | 0.00%  |
| 3130_10 | 0     | 0    | 0     | 1953    | 0.00% | 0.00% | 0.00%  |
| 3130_12 | 0     | 0    | 0     | 3868    | 0.00% | 0.00% | 0.00%  |
| 3130_13 | 0     | 0    | 0     | 1953    | 0.00% | 0.00% | 0.00%  |
| 3130_14 | 0     | 0    | 0     | 873     | 0.00% | 0.00% | 0.00%  |
| 3130_15 | 0     | 0    | 0     | 2186    | 0.00% | 0.00% | 0.00%  |
| 3130_16 | 0     | 0    | 0     | 5172    | 0.00% | 0.00% | 0.00%  |
| 3130_17 | 0     | 0    | 0     | 1953    | 0.00% | 0.00% | 0.00%  |
| 3130_18 | 0     | 0    | 0     | 1953    | 0.00% | 0.00% | 0.00%  |
| 3130_19 | 0     | 0    | 0     | 1953    | 0.00% | 0.00% | 0.00%  |
| 3130_20 | 0     | 0    | 0     | 3620    | 0.00% | 0.00% | 0.00%  |
| 6223_2  | 0     | 0    | 0     | 1953    | 0.00% | 0.00% | 0.00%  |
| 6223_13 | 0     | 0    | 0     | 63      | 0.00% | 0.00% | 0.00%  |
| 6223_20 | 0     | 0    | 0     | 1953    | 0.00% | 0.00% | 0.00%  |
| 7670_1  | 0     | 0    | 0     | 1953    | 0.00% | 0.00% | 0.00%  |
| 7670_2  | 0     | 0    | 0     | 31248   | 0.00% | 0.00% | 0.00%  |
| 11364_1 | 0     | 0    | 0     | 1953    | 0.00% | 0.00% | 0.00%  |

| 11364_2  | 0 | 0 | 0 | 1953   | 0.00% | 0.00% | 0.00% |
|----------|---|---|---|--------|-------|-------|-------|
| 11364_3  | 0 | 0 | 0 | 178    | 0.00% | 0.00% | 0.00% |
| 11364_4  | 0 | 0 | 0 | 7513   | 0.00% | 0.00% | 0.00% |
| 11364_5  | 0 | 0 | 0 | 7811   | 0.00% | 0.00% | 0.00% |
| 11364_6  | 0 | 0 | 0 | 1953   | 0.00% | 0.00% | 0.00% |
| 11364_7  | 0 | 0 | 0 | 93732  | 0.00% | 0.00% | 0.00% |
| 11364_8  | 0 | 0 | 0 | 111572 | 0.00% | 0.00% | 0.00% |
| 19055_5  | 0 | 0 | 0 | 1953   | 0.00% | 0.00% | 0.00% |
| 10511_9  | 0 | 0 | 0 | 7811   | 0.00% | 0.00% | 0.00% |
| 10511_10 | 0 | 0 | 0 | 1953   | 0.00% | 0.00% | 0.00% |

APPENDIX L: CANOPY COVER ESTIMATES (AREA AND PERCENT COVER) FOR EASTERN MASSASAUGA (EMR) ELEMENT OCCURRENCES (EOS) IN THE SHIAWASSEE STUDY REGION FOR 2023. (NOTE: EO\_ID SPLIT INDICATES INDIVIDUAL SOURCE FEATURES/LOCATIONS THAT COMPRISE EACH EO. CELLS HIGHLIGHTED IN RED INDICATE AREAS WITH CANOPY ESTIMATES GREATER THAN 50% AND POTENTIAL AREAS FOR HABITAT MANAGEMENT FOR EMRS.)

| 2023           |                |               |                 |                  |                            |                           |                                |  |  |  |
|----------------|----------------|---------------|-----------------|------------------|----------------------------|---------------------------|--------------------------------|--|--|--|
| EO_ID<br>split | Forest<br>(m²) | Shrub<br>(m²) | Total<br>Canopy | Total EO<br>Area | Percent<br>Cover<br>Forest | Percent<br>Cover<br>Shrub | Percent<br>Cover All<br>Canopy |  |  |  |
| 3130_10        | 1304           | 80            | 1384            | 1953             | 66.77%                     | 4.10%                     | 70.87%                         |  |  |  |
| 3130_9         | 356            | 1024          | 1380            | 1953             | 18.23%                     | 52.43%                    | 70.66%                         |  |  |  |
| 3130_11        | 8              | 1164          | 1172            | 1953             | 0.41%                      | 59.60%                    | 60.01%                         |  |  |  |
| 6223_19        | 116            | 1020          | 1136            | 1953             | 5.94%                      | 52.23%                    | 58.17%                         |  |  |  |
| 6223_13        | 12             | 20            | 32              | 63               | 19.05%                     | 31.75%                    | 50.79%                         |  |  |  |
| 3130_2         | 220            | 1536          | 1756            | 3659             | 6.01%                      | 41.98%                    | 47.99%                         |  |  |  |
| 6223_18        | 556            | 376           | 932             | 1953             | 28.47%                     | 19.25%                    | 47.72%                         |  |  |  |
| 3130_17        | 0              | 864           | 864             | 1953             | 0.00%                      | 44.24%                    | 44.24%                         |  |  |  |
| 3130_15        | 888            | 8             | 896             | 2186             | 40.62%                     | 0.37%                     | 40.99%                         |  |  |  |
| 3130_19        | 284            | 500           | 784             | 1953             | 14.54%                     | 25.60%                    | 40.14%                         |  |  |  |
| 3130_18        | 388            | 292           | 680             | 1953             | 19.87%                     | 14.95%                    | 34.82%                         |  |  |  |
| 3130_4         | 176            | 440           | 616             | 1953             | 9.01%                      | 22.53%                    | 31.54%                         |  |  |  |
| 6223_10        | 72             | 540           | 612             | 1953             | 3.69%                      | 27.65%                    | 31.34%                         |  |  |  |
| 3130_12        | 324            | 788           | 1112            | 3868             | 8.38%                      | 20.37%                    | 28.75%                         |  |  |  |
| 6223_5         | 140            | 352           | 492             | 1953             | 7.17%                      | 18.02%                    | 25.19%                         |  |  |  |
| 6223_3         | 19348          | 10536         | 29884           | 125279           | 15.44%                     | 8.41%                     | 23.85%                         |  |  |  |
| 3130_5         | 8              | 444           | 452             | 1953             | 0.41%                      | 22.73%                    | 23.14%                         |  |  |  |
| 6223_17        | 1344           | 812           | 2156            | 9421             | 14.27%                     | 8.62%                     | 22.89%                         |  |  |  |
| 6223_16        | 308            | 48            | 356             | 1953             | 15.77%                     | 2.46%                     | 18.23%                         |  |  |  |
| 6223_20        | 224            | 104           | 328             | 1953             | 11.47%                     | 5.33%                     | 16.79%                         |  |  |  |
| 6223_9         | 76             | 200           | 276             | 1953             | 3.89%                      | 10.24%                    | 14.13%                         |  |  |  |
| 3130_3         | 12             | 576           | 588             | 4665             | 0.26%                      | 12.35%                    | 12.60%                         |  |  |  |
| 3130_6         | 296            | 3732          | 4028            | 32487            | 0.91%                      | 11.49%                    | 12.40%                         |  |  |  |
| 6223_8         | 68             | 160           | 228             | 1953             | 3.48%                      | 8.19%                     | 11.67%                         |  |  |  |
| 3130_20        | 0              | 232           | 232             | 3620             | 0.00%                      | 6.41%                     | 6.41%                          |  |  |  |
| 6223_4         | 0              | 64            | 64              | 1146             | 0.00%                      | 5.58%                     | 5.58%                          |  |  |  |
| 6223_14        | 12             | 184           | 196             | 3903             | 0.31%                      | 4.71%                     | 5.02%                          |  |  |  |
| 6223_11        | 12             | 76            | 88              | 1953             | 0.61%                      | 3.89%                     | 4.51%                          |  |  |  |
| 3130_13        | 0              | 76            | 76              | 1953             | 0.00%                      | 3.89%                     | 3.89%                          |  |  |  |
| 3130_7         | 16             | 36            | 52              | 1953             | 0.82%                      | 1.84%                     | 2.66%                          |  |  |  |
| 6223_15 | 0 | 48 | 48 | 1953    | 0.00% | 2.46% | 2.46% |
|---------|---|----|----|---------|-------|-------|-------|
| 3130_8  | 0 | 24 | 24 | 1953    | 0.00% | 1.23% | 1.23% |
| 6223_7  | 0 | 4  | 4  | 1953    | 0.00% | 0.20% | 0.20% |
| 3130_16 | 0 | 8  | 8  | 5172    | 0.00% | 0.15% | 0.15% |
| 1422    | 0 | 0  | 0  | 8351493 | 0.00% | 0.00% | 0.00% |
| 1419    | 0 | 0  | 0  | 1436848 | 0.00% | 0.00% | 0.00% |
| 3130_1  | 0 | 0  | 0  | 589     | 0.00% | 0.00% | 0.00% |
| 3130_14 | 0 | 0  | 0  | 873     | 0.00% | 0.00% | 0.00% |
| 5567_21 | 0 | 0  | 0  | 1953    | 0.00% | 0.00% | 0.00% |
| 5567_22 | 0 | 0  | 0  | 456382  | 0.00% | 0.00% | 0.00% |
| 6223_1  | 0 | 0  | 0  | 1953    | 0.00% | 0.00% | 0.00% |
| 6223_2  | 0 | 0  | 0  | 1953    | 0.00% | 0.00% | 0.00% |
| 6223_6  | 0 | 0  | 0  | 1953    | 0.00% | 0.00% | 0.00% |
| 6223_12 | 0 | 0  | 0  | 5302    | 0.00% | 0.00% | 0.00% |
| 6223_21 | 0 | 0  | 0  | 35326   | 0.00% | 0.00% | 0.00% |
| 6223_22 | 0 | 0  | 0  | 2630    | 0.00% | 0.00% | 0.00% |
| 6223_23 | 0 | 0  | 0  | 1953    | 0.00% | 0.00% | 0.00% |
| 6223_24 | 0 | 0  | 0  | 40613   | 0.00% | 0.00% | 0.00% |
| 7670_1  | 0 | 0  | 0  | 1953    | 0.00% | 0.00% | 0.00% |
| 7670_2  | 0 | 0  | 0  | 31248   | 0.00% | 0.00% | 0.00% |
| 11364_1 | 0 | 0  | 0  | 1953    | 0.00% | 0.00% | 0.00% |
| 11364_2 | 0 | 0  | 0  | 1953    | 0.00% | 0.00% | 0.00% |
| 11364_3 | 0 | 0  | 0  | 178     | 0.00% | 0.00% | 0.00% |
| 11364_4 | 0 | 0  | 0  | 7513    | 0.00% | 0.00% | 0.00% |
| 11364_5 | 0 | 0  | 0  | 7811    | 0.00% | 0.00% | 0.00% |
| 11364_6 | 0 | 0  | 0  | 1953    | 0.00% | 0.00% | 0.00% |
| 11364_7 | 0 | 0  | 0  | 93732   | 0.00% | 0.00% | 0.00% |
| 11364_8 | 0 | 0  | 0  | 111572  | 0.00% | 0.00% | 0.00% |
| 19055_1 | 0 | 0  | 0  | 1953    | 0.00% | 0.00% | 0.00% |
| 19055_2 | 0 | 0  | 0  | 1953    | 0.00% | 0.00% | 0.00% |
| 19055_3 | 0 | 0  | 0  | 85912   | 0.00% | 0.00% | 0.00% |
| 19055_4 | 0 | 0  | 0  | 33134   | 0.00% | 0.00% | 0.00% |
| 19055_5 | 0 | 0  | 0  | 1953    | 0.00% | 0.00% | 0.00% |
| 10511_1 | 0 | 0  | 0  | 7811    | 0.00% | 0.00% | 0.00% |
| 10511_2 | 0 | 0  | 0  | 1953    | 0.00% | 0.00% | 0.00% |
| 10511_3 | 0 | 0  | 0  | 30692   | 0.00% | 0.00% | 0.00% |
| 10511_4 | 0 | 0  | 0  | 1953    | 0.00% | 0.00% | 0.00% |
| 10511_5 | 0 | 0  | 0  | 2879    | 0.00% | 0.00% | 0.00% |
| 10511_6 | 0 | 0  | 0  | 1953    | 0.00% | 0.00% | 0.00% |
| 10511_7 | 0 | 0  | 0  | 1953    | 0.00% | 0.00% | 0.00% |
| 10511_8 | 0 | 0  | 0  | 31245   | 0.00% | 0.00% | 0.00% |

| 10511_9  | 0 | 0 | 0 | 7811    | 0.00% | 0.00% | 0.00% |
|----------|---|---|---|---------|-------|-------|-------|
| 10511_10 | 0 | 0 | 0 | 1953    | 0.00% | 0.00% | 0.00% |
| 10511_11 | 0 | 0 | 0 | 31247   | 0.00% | 0.00% | 0.00% |
| 10511_12 | 0 | 0 | 0 | 1953    | 0.00% | 0.00% | 0.00% |
| 10511_13 | 0 | 0 | 0 | 1953    | 0.00% | 0.00% | 0.00% |
| 20057_1  | 0 | 0 | 0 | 365048  | 0.00% | 0.00% | 0.00% |
| 20057_2  | 0 | 0 | 0 | 1953    | 0.00% | 0.00% | 0.00% |
| 11371_1  | 0 | 0 | 0 | 399     | 0.00% | 0.00% | 0.00% |
| 11371_2  | 0 | 0 | 0 | 214     | 0.00% | 0.00% | 0.00% |
| 11371_3  | 0 | 0 | 0 | 1160194 | 0.00% | 0.00% | 0.00% |

APPENDIX M: CANOPY COVER ESTIMATES (AREA AND PERCENT COVER) FOR EASTERN MASSASAUGA (EMR) ELEMENT OCCURRENCES (EOS) IN THE BARRY COUNTY STUDY REGION FOR 2011. (NOTE: EO\_ID SPLIT INDICATES INDIVIDUAL SOURCE FEATURES/LOCATIONS THAT COMPRISE EACH EO. CELLS HIGHLIGHTED IN RED INDICATE AREAS WITH CANOPY ESTIMATES GREATER THAN 50% AND POTENTIAL AREAS FOR HABITAT MANAGEMENT FOR EMRS.)

| 2011           |                |               |                 |                  |                            |                           |                                   |  |  |
|----------------|----------------|---------------|-----------------|------------------|----------------------------|---------------------------|-----------------------------------|--|--|
| EO_ID<br>split | Forest<br>(m²) | Shrub<br>(m²) | Total<br>Canopy | Total EO<br>Area | Percent<br>Cover<br>Forest | Percent<br>Cover<br>Shrub | Percent<br>Cover<br>All<br>Canopy |  |  |
| 12835_6        | 488            | 484           | 972             | 1957             | 24.94%                     | 24.73%                    | 49.67%                            |  |  |
| 12835_2        | 424            | 388           | 812             | 1957             | 21.67%                     | 19.83%                    | 41.49%                            |  |  |
| 19833_2        | 488            | 316           | 804             | 1957             | 24.94%                     | 16.15%                    | 41.08%                            |  |  |
| 12835_1        | 1856           | 1120          | 2976            | 7826             | 23.72%                     | 14.31%                    | 38.03%                            |  |  |
| 19833_7        | 196            | 412           | 608             | 1957             | 10.02%                     | 21.05%                    | 31.07%                            |  |  |
| 19832_1        | 1124           | 1296          | 2420            | 7828             | 14.36%                     | 16.56%                    | 30.91%                            |  |  |
| 19833_6        | 132            | 468           | 600             | 1957             | 6.75%                      | 23.91%                    | 30.66%                            |  |  |
| 19833_1        | 480            | 64            | 544             | 1957             | 24.53%                     | 3.27%                     | 27.80%                            |  |  |
| 19833_4        | 192            | 280           | 472             | 1957             | 9.81%                      | 14.31%                    | 24.12%                            |  |  |
| 17113_3        | 5168           | 29840         | 35008           | 145238           | 3.56%                      | 20.55%                    | 24.10%                            |  |  |
| 19833_10       | 1232           | 604           | 1836            | 7828             | 15.74%                     | 7.72%                     | 23.45%                            |  |  |
| 12751_4        | 172            | 284           | 456             | 1957             | 8.79%                      | 14.51%                    | 23.30%                            |  |  |
| 19832_2        | 172            | 284           | 456             | 1957             | 8.79%                      | 14.51%                    | 23.30%                            |  |  |
| 19835_2        | 1080           | 1296          | 2376            | 11132            | 9.70%                      | 11.64%                    | 21.34%                            |  |  |
| 19836_1        | 1080           | 1296          | 2376            | 11132            | 9.70%                      | 11.64%                    | 21.34%                            |  |  |
| 19833_3        | 808            | 1940          | 2748            | 13424            | 6.02%                      | 14.45%                    | 20.47%                            |  |  |
| 19835_9        | 120            | 268           | 388             | 1958             | 6.13%                      | 13.69%                    | 19.82%                            |  |  |
| 12751_1        | 108            | 272           | 380             | 1957             | 5.52%                      | 13.90%                    | 19.42%                            |  |  |
| 19834_1        | 108            | 272           | 380             | 1957             | 5.52%                      | 13.90%                    | 19.42%                            |  |  |
| 19833_8        | 1644           | 3356          | 5000            | 27675            | 5.94%                      | 12.13%                    | 18.07%                            |  |  |
| 12835_4        | 216            | 1832          | 2048            | 13425            | 1.61%                      | 13.65%                    | 15.26%                            |  |  |
| 19835_4        | 64             | 216           | 280             | 1957             | 3.27%                      | 11.04%                    | 14.31%                            |  |  |
| 19836_3        | 64             | 216           | 280             | 1957             | 3.27%                      | 11.04%                    | 14.31%                            |  |  |
| 19833_5        | 36             | 988           | 1024            | 7828             | 0.46%                      | 12.62%                    | 13.08%                            |  |  |
| 17113_2        | 116            | 132           | 248             | 1957             | 5.93%                      | 6.75%                     | 12.67%                            |  |  |
| 19837          | 5160           | 1908          | 7068            | 57283            | 9.01%                      | 3.33%                     | 12.34%                            |  |  |
| 19835_1        | 5160           | 1908          | 7068            | 57283            | 9.01%                      | 3.33%                     | 12.34%                            |  |  |
| 12835_10       | 7676           | 21112         | 28788           | 241808           | 3.17%                      | 8.73%                     | 11.91%                            |  |  |
| 12751_2        | 664            | 616           | 1280            | 11472            | 5.79%                      | 5.37%                     | 11.16%                            |  |  |
| 19834_2        | 664            | 616           | 1280            | 11472            | 5.79%                      | 5.37%                     | 11.16%                            |  |  |

| 7666     | 51736 | 34100 | 85836  | 782674  | 6.61% | 4.36%  | 10.97% |
|----------|-------|-------|--------|---------|-------|--------|--------|
| 19835_7  | 0     | 300   | 300    | 2818    | 0.00% | 10.65% | 10.65% |
| 19835_6  | 41260 | 10928 | 52188  | 501029  | 8.24% | 2.18%  | 10.42% |
| 12751_3  | 1640  | 4436  | 6076   | 61051   | 2.69% | 7.27%  | 9.95%  |
| 2383     | 760   | 2092  | 2852   | 31310   | 2.43% | 6.68%  | 9.11%  |
| 12751_5  | 1508  | 512   | 2020   | 32735   | 4.61% | 1.56%  | 6.17%  |
| 19832_3  | 1508  | 512   | 2020   | 32735   | 4.61% | 1.56%  | 6.17%  |
| 19835_10 | 98916 | 4656  | 103572 | 2540556 | 3.89% | 0.18%  | 4.08%  |
| 12835_8  | 12    | 48    | 60     | 2862    | 0.42% | 1.68%  | 2.10%  |
| 19835_3  | 0     | 156   | 156    | 7828    | 0.00% | 1.99%  | 1.99%  |
| 19836_2  | 0     | 156   | 156    | 7828    | 0.00% | 1.99%  | 1.99%  |
| 17113_1  | 4     | 28    | 32     | 1957    | 0.20% | 1.43%  | 1.64%  |
| 19833_9  | 0     | 16    | 16     | 1957    | 0.00% | 0.82%  | 0.82%  |
| 19835_5  | 288   | 208   | 496    | 125251  | 0.23% | 0.17%  | 0.40%  |
| 19836_4  | 288   | 208   | 496    | 125251  | 0.23% | 0.17%  | 0.40%  |

APPENDIX N: CANOPY COVER ESTIMATES (AREA AND PERCENT COVER) FOR EASTERN MASSASAUGA (EMR) ELEMENT OCCURRENCES (EOS) IN THE BARRY COUNTY STUDY REGION FOR 2014. (NOTE: EO\_ID SPLIT INDICATES INDIVIDUAL SOURCE FEATURES/LOCATIONS THAT COMPRISE EACH EO. CELLS HIGHLIGHTED IN RED INDICATE AREAS WITH CANOPY ESTIMATES GREATER THAN 50% AND POTENTIAL AREAS FOR HABITAT MANAGEMENT FOR EMRS.)

| 2014           |                |               |                 |                  |                            |                           |                                |  |  |
|----------------|----------------|---------------|-----------------|------------------|----------------------------|---------------------------|--------------------------------|--|--|
| EO_ID<br>split | Forest<br>(m²) | Shrub<br>(m²) | Total<br>Canopy | Total EO<br>Area | Percent<br>Cover<br>Forest | Percent<br>Cover<br>Shrub | Percent<br>Cover All<br>Canopy |  |  |
| 12835_6        | 524            | 468           | 992             | 1957             | 26.78%                     | 23.91%                    | 50.69%                         |  |  |
| 12835_2        | 444            | 400           | 844             | 1957             | 22.69%                     | 20.44%                    | 43.13%                         |  |  |
| 19833_2        | 488            | 308           | 796             | 1957             | 24.94%                     | 15.74%                    | 40.67%                         |  |  |
| 12835_1        | 1856           | 1132          | 2988            | 7826             | 23.72%                     | 14.46%                    | 38.18%                         |  |  |
| 19832_1        | 1120           | 1280          | 2400            | 7828             | 14.31%                     | 16.35%                    | 30.66%                         |  |  |
| 19833_7        | 200            | 384           | 584             | 1957             | 10.22%                     | 19.62%                    | 29.84%                         |  |  |
| 19833_6        | 116            | 464           | 580             | 1957             | 5.93%                      | 23.71%                    | 29.64%                         |  |  |
| 19833_1        | 496            | 64            | 560             | 1957             | 25.34%                     | 3.27%                     | 28.62%                         |  |  |
| 12751_4        | 168            | 312           | 480             | 1957             | 8.58%                      | 15.94%                    | 24.53%                         |  |  |
| 19832_2        | 168            | 312           | 480             | 1957             | 8.58%                      | 15.94%                    | 24.53%                         |  |  |
| 17113_3        | 5132           | 29968         | 35100           | 145238           | 3.53%                      | 20.63%                    | 24.17%                         |  |  |
| 19833_10       | 1244           | 604           | 1848            | 7828             | 15.89%                     | 7.72%                     | 23.61%                         |  |  |
| 19833_4        | 164            | 264           | 428             | 1957             | 8.38%                      | 13.49%                    | 21.87%                         |  |  |
| 19835_2        | 1112           | 1312          | 2424            | 11132            | 9.99%                      | 11.79%                    | 21.78%                         |  |  |
| 19836_1        | 1112           | 1312          | 2424            | 11132            | 9.99%                      | 11.79%                    | 21.78%                         |  |  |
| 19833_3        | 808            | 1952          | 2760            | 13424            | 6.02%                      | 14.54%                    | 20.56%                         |  |  |
| 12751_1        | 108            | 280           | 388             | 1957             | 5.52%                      | 14.31%                    | 19.83%                         |  |  |
| 19834_1        | 108            | 280           | 388             | 1957             | 5.52%                      | 14.31%                    | 19.83%                         |  |  |
| 19835_9        | 108            | 268           | 376             | 1958             | 5.52%                      | 13.69%                    | 19.20%                         |  |  |
| 19833_8        | 1652           | 3300          | 4952            | 27675            | 5.97%                      | 11.92%                    | 17.89%                         |  |  |
| 12835_4        | 216            | 1836          | 2052            | 13425            | 1.61%                      | 13.68%                    | 15.28%                         |  |  |
| 19835_4        | 76             | 220           | 296             | 1957             | 3.88%                      | 11.24%                    | 15.13%                         |  |  |
| 19836_3        | 76             | 220           | 296             | 1957             | 3.88%                      | 11.24%                    | 15.13%                         |  |  |
| 19833_5        | 36             | 996           | 1032            | 7828             | 0.46%                      | 12.72%                    | 13.18%                         |  |  |
| 19837          | 5184           | 1952          | 7136            | 57283            | 9.05%                      | 3.41%                     | 12.46%                         |  |  |
| 19835_1        | 5184           | 1952          | 7136            | 57283            | 9.05%                      | 3.41%                     | 12.46%                         |  |  |
| 12835_10       | 7848           | 21164         | 29012           | 241808           | 3.25%                      | 8.75%                     | 12.00%                         |  |  |
| 17113_2        | 100            | 128           | 228             | 1957             | 5.11%                      | 6.54%                     | 11.65%                         |  |  |
| 7666           | 51616          | 34092         | 85708           | 782674           | 6.59%                      | 4.36%                     | 10.95%                         |  |  |
| 19835_7        | 0              | 308           | 308             | 2818             | 0.00%                      | 10.93%                    | 10.93%                         |  |  |

| 12751_2  | 612   | 616   | 1228   | 11472   | 5.33% | 5.37% | 10.70% |
|----------|-------|-------|--------|---------|-------|-------|--------|
| 19834_2  | 612   | 616   | 1228   | 11472   | 5.33% | 5.37% | 10.70% |
| 19835_6  | 41288 | 10900 | 52188  | 501029  | 8.24% | 2.18% | 10.42% |
| 12751_3  | 1624  | 4416  | 6040   | 61051   | 2.66% | 7.23% | 9.89%  |
| 2383     | 772   | 2112  | 2884   | 31310   | 2.47% | 6.75% | 9.21%  |
| 12751_5  | 1668  | 508   | 2176   | 32735   | 5.10% | 1.55% | 6.65%  |
| 19832_3  | 1668  | 508   | 2176   | 32735   | 5.10% | 1.55% | 6.65%  |
| 19835_10 | 99188 | 4588  | 103776 | 2540556 | 3.90% | 0.18% | 4.08%  |
| 12835_8  | 12    | 48    | 60     | 2862    | 0.42% | 1.68% | 2.10%  |
| 19835_3  | 0     | 152   | 152    | 7828    | 0.00% | 1.94% | 1.94%  |
| 19836_2  | 0     | 152   | 152    | 7828    | 0.00% | 1.94% | 1.94%  |
| 17113_1  | 4     | 28    | 32     | 1957    | 0.20% | 1.43% | 1.64%  |
| 19833_9  | 0     | 16    | 16     | 1957    | 0.00% | 0.82% | 0.82%  |
| 19835_5  | 272   | 220   | 492    | 125251  | 0.22% | 0.18% | 0.39%  |
| 19836_4  | 272   | 220   | 492    | 125251  | 0.22% | 0.18% | 0.39%  |

APPENDIX O: CANOPY COVER ESTIMATES (AREA AND PERCENT COVER) FOR EASTERN MASSASAUGA (EMR) ELEMENT OCCURRENCES (EOS) IN THE BARRY COUNTY STUDY REGION FOR 2017. (NOTE: EO\_ID SPLIT INDICATES INDIVIDUAL SOURCE FEATURES/LOCATIONS THAT COMPRISE EACH EO. CELLS HIGHLIGHTED IN RED INDICATE AREAS WITH CANOPY ESTIMATES GREATER THAN 50% AND POTENTIAL AREAS FOR HABITAT MANAGEMENT FOR EMRS.)

| 2017           |                |               |                 |                  |                            |                           |                                |  |  |
|----------------|----------------|---------------|-----------------|------------------|----------------------------|---------------------------|--------------------------------|--|--|
| EO_ID<br>split | Forest<br>(m²) | Shrub<br>(m²) | Total<br>Canopy | Total EO<br>Area | Percent<br>Cover<br>Forest | Percent<br>Cover<br>Shrub | Percent<br>Cover All<br>Canopy |  |  |
| 12835_5        | 3012           | 0             | 3012            | 7826             | 38.49%                     | 0.00%                     | 38.49%                         |  |  |
| 12835_1        | 996            | 720           | 1716            | 7826             | 12.73%                     | 9.20%                     | 21.93%                         |  |  |
| 1542_3         | 1892           | 4064          | 5956            | 31305            | 6.04%                      | 12.98%                    | 19.03%                         |  |  |
| 12835_10       | 21832          | 18416         | 40248           | 241808           | 9.03%                      | 7.62%                     | 16.64%                         |  |  |
| 19838          | 7992           | 11864         | 19856           | 125219           | 6.38%                      | 9.47%                     | 15.86%                         |  |  |
| 1542_1         | 7992           | 11864         | 19856           | 125219           | 6.38%                      | 9.47%                     | 15.86%                         |  |  |
| 17113_3        | 4608           | 16700         | 21308           | 145238           | 3.17%                      | 11.50%                    | 14.67%                         |  |  |
| 7666           | 78572          | 18912         | 97484           | 782674           | 10.04%                     | 2.42%                     | 12.46%                         |  |  |
| 1542_2         | 3472           | 2408          | 5880            | 48898            | 7.10%                      | 4.92%                     | 12.03%                         |  |  |
| 2383           | 2892           | 12            | 2904            | 31310            | 9.24%                      | 0.04%                     | 9.27%                          |  |  |
| 12835_4        | 4              | 1028          | 1032            | 13425            | 0.03%                      | 7.66%                     | 7.69%                          |  |  |
| 12835_7        | 12             | 1620          | 1632            | 23125            | 0.05%                      | 7.01%                     | 7.06%                          |  |  |
| 12835_3        | 24             | 532           | 556             | 13520            | 0.18%                      | 3.93%                     | 4.11%                          |  |  |
| 12835_6        | 0              | 64            | 64              | 1957             | 0.00%                      | 3.27%                     | 3.27%                          |  |  |
| 12835_8        | 12             | 32            | 44              | 2862             | 0.42%                      | 1.12%                     | 1.54%                          |  |  |